Vannessa Swure test file

VOC Emissions From the Drying of Douglas-fir Lumber

Report to

Columbia Vista Corporation – Vancouver, WA

			_	
- V	,		ı	a
	1	1	t	7
L	_		-	

Bob Randv LPaul . Wess Clint Natalia Vannessa John Jackie Jerry David Laurie Brian Carta Kathy Chip Traci Tina File

Report by

Michael R. Milota
Department of Wood Science and Engineering
Oregon State University
Corvallis, OR 97331

June 14, 2005

VOC Emissions From the Drying of Douglas-fir Lumber

Report to

Columbia Vista Corporation Vancouver, WA

Report by

Michael R. Milota
Department of Wood Science and Engineering
Oregon State University
Corvallis, OR 97331

June 14, 2005

TABLE OF CONTENTS

I	Results Summary	
II	Lumber Source and Handling	l
III	Kiln Description and Operation1Humidity control2Temperature control3Schedules3Charge sequence3	2
IV	Sampling Systems and Methodologies 4	ļ
V	Data Reduction and Treatment6Flow calculations7Moisture calculations7Total hydrocarbon calculations7	7 7
VI	Sampling Results	3
VII	Quality Assurance 11 Leak checks 11 Calibration 11 Anomalies 11	1
	APPENDICES	
Apper	ndix 1. Detailed sampling procedures	2
Apper	ndix 2. Data in electronic form	ļ
Apper	ndix 3. Samples of field data sheets	2
Apper	ndix 4. Calibration data	7

LIST OF FIGURES

FIGURE 1. Schematic of kiln and sampling system	2
FIGURE 2. Drying schedule	3
FIGURE 3. Dry- and wet-bulb temperatures during the cycle	4
FIGURE 4A. Schematic of heated filter box	5
FIGURE 4B. Photo of VOC sampling system	6
FIGURE 5. Hydrocarbon concentration and vent rate versus time	9
FIGURE 6. Cumulative emissions and rate of emissions versus time	9
FIGURE 7. Moisture content versus time for the charge 1	0
FIGURE 8. Cumulative emissions versus moisture content of the charge 1	0
LIST OF TABLES	
LIGITOT TABLES	
TABLE 1. Summary of results	1
TARLE 2. Summary of sample runs for analysis of total hydrocarbon.	1

VOC emissions from the drying of Douglas-fir lumber

I. Results Summary

One charge, containing 98 board feet of 4" by 4" Douglas-fir, was dried from green in a small kiln at Oregon State University. The kiln dry- and wet-bulb temperatures based on a schedule provided by Columbia Vista. The maximum temperature was 180°F (82.2°C). The air velocity was 500 feet per minute (2.5 m/s). The kiln was indirectly heated with steam. There was no humidification. Regulating the amount of air entering the kiln controlled venting and the humidity.

A JUM 3-200 total hydrocarbon analyzer was used to measure organic emissions following EPA Method 25A. The results are shown in Table 1.

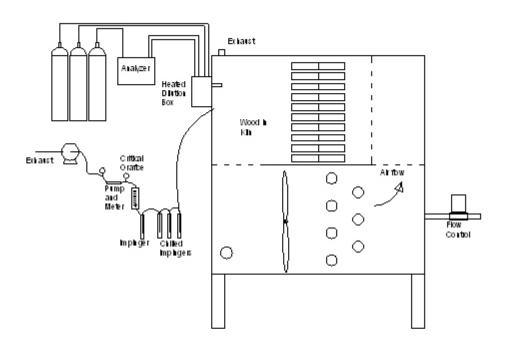
TABLE 1. Summary of results.

Initial MC	Final MC ^A	Time	VOCB
%	%	hr:min	lb/mbf
29.8	19	67:30	0.39

^A actual final MC was 10.3% at 144:09 hours

II. Lumber Source and Handling

Enough wood for the two charges of lumber was delivered by Columbia Vista on 6-1-05. Upon receipt, the wood was wrapped in plastic. On 6-2-05, half the wood was randomly selected for the first charge. The remaining wood was wrapped in plastic and stored in a refrigerator in case it was needed. The charge was dried for six days starting on Thursday, June 2.


III. Kiln Description and Operation

A schematic of the kiln is shown in Figure 1. The kiln box is approximately 4' by 4' by 4'. It is indirectly heated by steam. Four dry-bulb thermocouples and two wet-bulb thermocouples are located on the entering-air side of the load. The dry-bulb thermocouples are spaced in a grid. The two wet-bulb thermocouples are under a single sock at the center of the entering-air side of the load.

^B as carbon

Humidity control

A 200 L/min MKS mass flow meter controlled and measured the amount of air entering the kiln. It was factory calibrated and checked using a bubble meter. The amount of air entering the kiln is based on the wet-bulb temperature - if it is above setpoint, the airflow is increased and if it is below setpoint the airflow is decreased. This is analogous to venting for a commercial kiln. A minimum of 6 L/min entered the kiln at all times, more than removed by the analyzer (2.6 L/min). Putting air into the kiln at a rate of 100 L/min causes the pressure in the kiln to be 60 to 130 Pa above ambient, depending on location in the kiln (high-pressure or low-pressure side). Thus, any fugitive leakage should be out of the kiln. Two additional flow meters can be manually set to provide additional airflow. These were not used in this study. The steam spray line is disabled, so no water vapor is added to the kiln atmosphere. The impinger train in Figure 1 was not used in this work.

FIGURE 1. Schematic of kiln and sampling system.

Temperature control

Temperature in the kiln is controlled by indirect steam heating. When the average of the four dry-bulb thermocouples is below setpoint, the steam pressure in the coil is increased. When it is above setpoint, steam flow to the coil is reduced.

Schedules

The drying schedule used (Figure 2) was based on drying conditions supplied by the mill. The values in Figure 2 are based on the entering-air temperature. This represents the highest temperature the wood would experience in a commercial kiln.

Charge Sequence

The lumber was unwrapped and 2" were trimmed from each end of each board to give 44" samples. These were then weighed, placed in the kiln and dried according to the schedule in Figure 2. The actual temperatures are shown in Figure 3. Sampling for hydrocarbon was done as described in section IV. At the end of drying the wood was weighed, oven dried (four 4 days at 103°C to a constant weight), and reweighed so initial and final moisture contents could be determined by ASTM D4442 (oven-dry method).

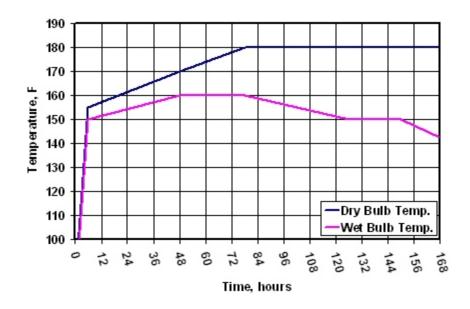
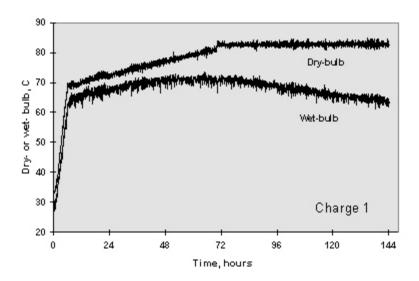
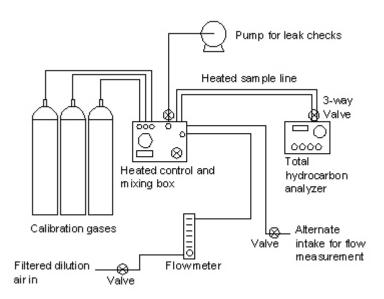



FIGURE 2. Drying schedule.

FIGURE 3. Dry- and wet-bulb temperatures.

IV. Sampling Systems and Methodologies


Sampling for total hydrocarbon is done directly from the kiln as shown in Figure 1. The concentration obtained from the hydrocarbon analyzer and the amount of air entering the kiln allow the total hydrocarbon emissions to be calculated. No impingers were used.

Figures 4a and 4b show the hydrocarbon sampling system. Unlike stack testing, all necessary equipment is permanently mounted on the kiln and flows are controlled with valves. The sample is withdrawn from the kiln under the assumption that the gas in the kiln is well-mixed and that the composition in the kiln near the exhaust is the same as the composition of the exhaust. The THC sample was drawn from the kiln directly into a heated dilution/filter box mounted on the side of the kiln. The box was heated to 125°C. Heated dilution gas can be added to the hydrocarbon sample gas to lower the gas moisture content to the detector. Dilution air was used when the gas moisture content in the kiln was greater than 15% so that the air moisture content to the detector remained less than 15%. The sample line from the box to the analyzer was heated to 133°C. The valve at the back of the analyzer was heated to 145°C.

The fuel gas was hydrogen. The span gas was EPA Protocol 905 ppm propane in air, the mid-gas was certified 412 ppm propane. The zero gas was 0.1 ppm air. Detailed sampling procedures are in Appendix 1 and a summary is presented below.

Leak checks were conducted before and after the charge was dried. Valves are closed and all components from just behind the probe tip to the valve at the back of the analyzer are placed under a 18-20 inHg vacuum. Less than one inHg pressure change during two minutes is acceptable and this was met.

Total flow and sample flow to the analyzer were checked using an NIST-traceable flow meter. Total flow is measured with the dilution gas off. Sample flow is measured with it on. This was done at the beginning and end of each sampling interval. The meter was attached to the system near the probe tip within the heated box. The valves were repositioned so that the sample came from the flow meter rather than the kiln. Readings of flow were made with the dilution gas both off and on. The flow readings were verified by observing the change in the analyzer reading for span gas with the dilution gas off and on. The dilution ratio calculated based on the analyzer readings was within 2% of that determined by the flow meter.

FIGURE 4A. Schematic of heated filter box with air dilution system, heated sample line, and analyzer. Sample enters heated box from back of drawing (box is attached to kiln).

FIGURE 4B. Photo of VOC sampling system showing heated sample box (with white insulation), toggle valves and flow meter for calibration gases (upper left), on/off valve for calibration gas (3 at upper center right), heated sample line to analyzer (green tube, lower left), valve for sample (2 at center), toggle valve to vacuum pump (near calibration gas valves), and vent/flowmeter valve (4 at upper right).

Calibration of the zero and span of the detector was done at the beginning of each run (about every six to nine hours). The calibration gas was introduced by setting the valves so the calibration gas entered the system near the probe tip at ambient pressure. The calibration was checked at the end of each run with no adjustments made to the zero or span during the run. The span drift was always less than two percent of full scale for a run and generally less than one percent. The zero drift was minimal during entire drying cycles.

V. Data Reduction and Treatment

The "FlowCalc" worksheet in the Excel file "Kiln, Run1.XLS" in Appendix 2 shows the calculations for each 3-minute interval during the charges. Column A is a reading number. Columns B and C are the clock and charge times, respectively. Columns D and E are the average dry- and wet-bulb temperatures. Column F is the vapor pressure of water at the wet-bulb temperature. The absolute humidity is shown in column G and the

molal humidity in column H. These are calculated based on the dry-bulb temperature, wet-bulb temperature, vapor pressure.

Flow calculations

The volumetric dry gas flow rate in column I is the flowmeter reading adjusted for the meter calibrations and the molar humidity of the entering gas. This is in standard (at 0°C) liters per minute. In column J this has been converted to a mass flow rate in kg/min and in column K is the same information is expressed as a molal flow rate. These values are for the dry gas vented from the kiln.

Moisture calculations

The water removal rate in g/min (column L) is calculated from the humidity (column G) and the gas flow (column J). The and the total water (column M) is an integration of column L over time.

The moisture content of the wood at each time interval in the event (column N) was determined by reducing the MC of the wood from the previous value by accounting for the amount of water leaving the kiln during the interval. This amount has been adjusted by adjusting the wet-bulb temperature to make the ending moisture content match.

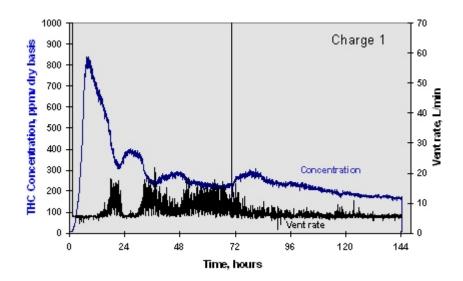
Total hydrocarbon calculations

The original total hydrocarbon analyzer reading is shown in column O. In column P this has been corrected to compensate for the range setting switch on the analyzer and scaling between the analyzer reading and the computer reading. Also in column P, the THA data between sampling runs has been adjusted to the average of the data during the 12-minute period before the analyzer testing and calibration time. The dilution THA (column Q) is the corrected THA reading divided by the dilution ratio (from column Y). In column R we have the opportunity to compensate for the effect of moisture on the JUM detector. This was not done so column R equals column Q. Finally in column S, the hydrocarbon concentration is converted to a dry gas basis concentration using the molar humidity (column H).

In column T, the hydrocarbon flow rate in g_{carbon} /min is calculated in a manner analogous to the water flow rate using the dry gas flow rate and the hydrocarbon concentration. Column U is the integral of column T over time, the cumulative hydrocarbon release up to that point in the schedule. Column V is the cumulative unit emissions, that is, column U divided by the oven-dry weight of the wood in the kiln.

Column X indicates the hydrocarbon sampling run and column Y is the dilution ratio during that run. The next two columns, Z and AA, are the cumulative dry gas and water during the kiln cycle. These are used obtain the average gas moisture contents. The uncorrected wood moisture content is shown in column AC. This is the MC in column N before adjustment of the wet-bulb to make the beginning and ending MCs match the ovendry test. The kiln air and analyzer air moisture contents (based on volume) are shown in columns AD and AE.

At the end of the FlowCalc spreadsheet are summaries by run of the flow data for the total hydrocarbon run intervals. Further down are summaries by impinger interval. These are the tables that appear in the body of the report. The other pages in the files "Kiln.XLS" are graphs of the data in the FlowCalc page.


Moisture content and board weight data are in the files named "Board, Run 1.XLS."

VI. Sampling Results

The hydrocarbon emissions are summarized graphically here. All emission data is presented in detail in electronic form in Appendix 2. A summary for each sampling interval is in Table 2.

Figure 5 shows total hydrocarbon concentration (left scale) and dry gas vent rate (right scale) versus time. The vent rate is low (compared to venting from dimension lumber) throughout the schedule because of the thickness of the wood and its low initial moisture content. The venting increases as the kiln reaches setpint and as the wet-bulb depression is increased. By the fourth day, the wood is at too low a moisture content for the water from the wood to maintain the wet-bulb temperature so venting is low for the remainder of the schedule.

Initially, the total hydrocarbon concentration increases to a maximum, then decreases as venting increases. The total hydrocarbon concentration is very dependent on the venting throughout the schedule with a higher vent rate resulting in a lower hydrocarbon concentration and vice versa. Note that total hydrocarbon concentration is not indicative of the amount of hydrocarbon emissions unless one also considers the vent rate. These two factors combined determine the emissions.

FIGURE 5. Hydrocarbon concentration and vent rate versus time.

Figure 6 shows the cumulative hydrocarbon emissions and the rate of emissions versus time. The cumulative emissions is the emissions up to any point in time in the schedule. The rate of emissions is how much is coming out per unit time. The maximum emission rates occur early in the schedule. The rate of emissions is very low at the end of the schedule.

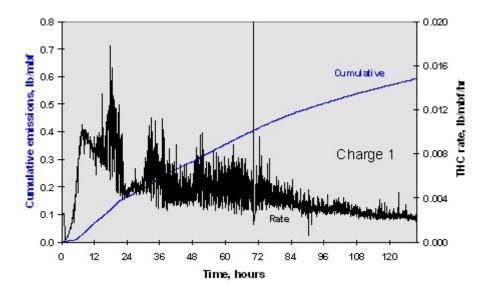



FIGURE 6. Cumulative and rate of emissions versus time (as carbon).

Figure 7 shows the wood moisture content versus time. The estimated moisture content is obtained from the humidity, vent rate, initial sample weight, final sample weight, and oven-dry sample weight. The initial moisture content was 29.8% on a dry basis by ASTM D4442. The final moisture content was 10.3%.

FIGURE 7. Moisture content versus time.

Figure 8 shows the cumulative hydrocarbon emissions versus moisture content. The hydrocarbon emissions for drying to any moisture content can be read from this graph. In agreement with past studies, there is a fairly linear relationship between the emissions and the decrease in moisture content, especially at lower moisture contents

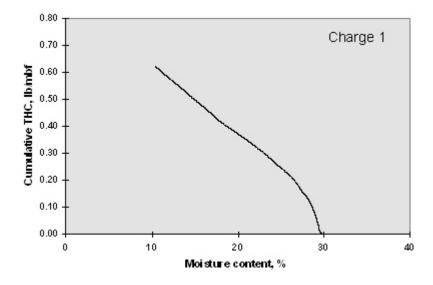


FIGURE 8. Cumulative emissions (as carbon) versus moisture content.

Table 2 shows the VOC results by run for the charge. A run is an interval between analyzer calibrations, about five to nine hours of data (recorded every 3 minutes). The interval time periods shown in the table include the times between sampling and mass calculations are adjusted to account for these. Sampling occurred for approximately 98% of the drying time. Samples of field sampling sheets, including dilution system and heated component data are given in Appendix 3 with full PDF format versions in Appendix 2.

TABLE 2. Summary of sample runs for analysis of total hydrocarbon.

Sample	Time	Average	Dry Flow	Wet Flow	THC mass	THC	THC	THC mass	THC rate	Average	Average
Run		Humidity	Rate @68	Rate@68	as C	wet conc	dry conc	as C	as C	Wood MC	Anal, M.C.
	hrs	kg/kg	1/min	1/min	g	ppm v	ppmv	lbs/mbf	lb/hr/m bf	%	%
1	7.70	0.028	33.2	34.8	1.29	229.7	284.2	0.029	0.0038	29.5	2.8
2	4.75	0.195	6.0	7.9	1.90	564.3	748.2	0.043	0.0090	29.1	15.5
3	9.85	0.220	9.5	12.9	3.75	351.2	478.2	0.084	0.0086	28.3	15.4
4	8.05	0.232	6.3	8.7	1.72	270.2	374.4	0.039	0.0048	27.0	13.3
5	1.45	0.247	8.8	12.2	0.40	251.5	354.7	0.009	0.0063	26.5	14.0
6	5.10	0.255	12.5	17.6	1.51	186.3	265.0	0.034	0.0067	25.8	14.3
7	9.00	0.269	9.4	13.5	1.98	180.6	261.2	0.045	0.0050	24.4	14.5
8	7.70	0.283	9.6	13.9	1.73	180.1	264.3	0.039	0.0051	22.9	13.8
9	6.90	0.283	10.7	15.6	1.55	159.3	233.9	0.035	0.0051	21.3	13.8
10	7.00	0.285	11.1	16.2	1.54	150.0	220.8	0.035	0.0050	19.8	13.5
Sum	67.50				17.4			0.392			
Average		0.230	11.7	15.3		252.3	348.5		0.0059		

VII. Quality Assurance

Leak checks

Leak checks were performed on the VOC system before and after drying by pulling a 17inHg vacuum and sealing the system for 2 minutes with less than 1 inHg change in pressure.

Calibration

Data for the calibration gases are given in Appendix 4. The mid gas was not named because the analyzer was within tolerance without naming. The calibration sheet for the flow meter is also included is also included in Appendix 4 as is the thermocouple calibration check.

Anomalies

There were no anomalies during the work that would significantly affect the data.

Appendix 1. Detailed Sampling Procedures

12

Columbia Vista Corp., June, 2005

OSU, Wood Science and Engineering

INSTRUCTIONS FOR CHECKS OF EMISSIONS KILN

Purpose: Ensure kiln is operating correctly

Clock time: Record from computer

Run time: Record from computer. Check the box if the computer screen being refreshed

and time is advancing.

Box temperature: Read from metal electrical box under desk, left controller. The top and

bottom numbers should be similar on the box should be similar, about 126 C...

Valve temperature: Read from metal electrical box under desk, right controller. The top and bottom numbers should be similar on the box should be similar, about 154 C..

Dry-bulb temperature: Read from computer screen. Compare to graph to be sure it's correct. If it's not within a degree or two of the chart, check again in a few minutes. During startup (the first 3 or so hours), it may not be able to track. If it's too high, the heat valve should be closed, too low and the heat valve should be open. If it does not appear to be working correctly, call Mike or Mark.

Wet-bulb temperature: Read from computer screen. Compare to graph to be sure it's correct.

If it is too low, it means that the kiln atmosphere is too dry. Check the flow meters. If Flow1 is about 10 L/min (its lower limit), make sure that Flow2 and Flow3 are turned off

If it's too high, then either the kiln atmosphere is too humid or the sock is not being wetted. If Flow 1 is near 200 L/min (its upper limit) add venting by opening Flow2 and/or Flow 3. The maximum for Flow2 is 50 L/min, if it reads over this value for several readings, reduce it to about 45 L/min. Don't change Flow3 often, rather set it and leave it for several hours if possible. Keep the Flow 3 reading constant by small adjustments. As Flow1 decreases or Flow2 turned down, there is more pressure behind Flow3 and the flow increased. Check for water in the wet-bulb reservoir (push the float down and make sure it's getting water).

Check both Wet-bulb1 and Wet-bulb2 and make sure they are reading about the same. If they differ by more than 2 C, call Mike or Mark.

If both wet-bulbs are reading the same as the dry-bulb, check the wet-bulb water.

If these procedures do not correct the wet-bulb temperature within 30 minutes, call Mike or Mark.

Line temperature: Read from gray box on wall above analyzer. It should read about 275°F.

Chiller temperature: Read the chiller temperature. It should be about -1°C.

Flow 1: Read from computer. The value of Flow1 changes depending on the wet-bulb. If Flow 1 is 10 L/min and the wet-bulb is too low, there's probably nothing we can do. If it's 200 L/min and the wet-bulb is too high, Flow2 and/or Flow3 can be opened. Flow2 and Flow3 should be adjusted so that Flow1 stays below 175 to 200 L/min.

Flow 2: Read from computer. The value of Flow2 is set by you. It will vary a little - as flow 1 goes down, flow 2 will go up. Do not set it to < 40 L/min if you think Flow1 is going to decrease or it will go off scale and not be read by the computer

Flow 3: Read from meter. The value of Flow3 is set by you. It will vary a little - as flow 1 goes down, flow 2 will go up. Be sure to clearly record this value and when you change it

Dilution flow: Read dilution flow meter. It should read the same setting as the red flag. Do not adjust. If significantly different, investigate.

F/M Flow: Read from rotometer. This should be about 400 to 500 cc/min.

Line vacuum: Read from the vacuum gauge. This should be about 20"Hg.

INSTRUCTIONS - FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER PRE-SAMPLE PROCEDURE

BACKGROUND INFORMATION

Get the dry- and wet-bulb temperatures from the kiln schedule or off the computer. Use the highest expected values for the run.

Read absolute humidity off the psychrometric chart or table.

Calculate or read from tables -

Percent moisture = 100 / [1 + 1 / 1.61*AbHum]

Target Dilution Ratio (TDR) = 15 / Percent Moisture

Event = the name of the drying cycle.

Run = the number of the 3-hour interval.

Operator, that's you.

Date and time are now, as you start the data collection process.

AMBIENT DATA

Call 9-754-0081 and get altimeter setting.

Read the laboratory temperature from the thermometer.

ANALYZER CALIBRATION

Set valves so that 1, 2 = off; 3=on; 4=vent. This allows gas to flow out of the vents from the calibration tanks and shuts off all other sources. Only calibration gas should go through the detector.

Open the zero gas tank valve

zero toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

wait for a stable reading (about 30 to 60 seconds)

use the zero dial (pot) on THA to get a zero reading

read the analyzer

read computer

note pot setting

close valve on zero gas tank

Open span gas tank valve

span toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

set analyzer to range 3

wait for a stable reading (about 30 to 60 seconds)

use the span dial (pot) on THA to get a reading of 905 ppm

read the analyzer, record, for example, 9.05 or 900 read computer (should read about 905) note pot setting

Open mid gas tank valve

mid toggle switch up (on), others down (off) set flow to 3.5 L/min using regulator on tank wait for a stable reading (about 30 to 60 seconds) read analyzer (do not adjust pot settings), record, for example, 4.12 or 412 read computer (should about 412) check for within tolerance turn off mid gas all toggle switches off

SET DILUTION FLOW BEFORE RUN

Set valves so that 1, 2, 3 = off; 4=meter. This allows gas to flow only from the meter to the detector.

Use the Gilibrator to take 4 readings of the total flow rate (TFR). This is the total flow drawn by the analyzer and should be about 2.6 L/min

Make sure the average does not include any "bad" readings

Record the average, L/min = cc/min / 1000

Write the Event, Run, and "Pre-TFR" on the Gilibrator printout.

Calculate the next two values -

Target dilution flow rate (TDFR) is the TFR x (1 - DR)

Target sample flow rate (TSFR) is the TFR x DR

Check that the sum of these is the Total Flow Rate

Set dilution flow

Set red pointer to desired dilution flow (on meter with valve 1)

Slowly open lower valve on dilution flow meter (1=on; 2, 3=off; 4=meter)

Use upper valve on dilution flow meter to adjust flow

Do not adjust this meter after this point

Read the meter that you just set and record the value

Use the Gilibrator to take 4 readings of the sample flow rate (SFR). This is the flow through the analyzer after dilution is set. It will vary, depending on the dilution setting.

Make sure the average does not include any "bad" readings

Record the average, L/min = cc/min / 1000

Write "Pre-SFR" on the Gilibrator printout.

CHECK DILUTION FLOW BEFORE RUN

Set valves so that 1, 3 = on; 2=off; 4=vent. This allows gas to flow out of the vent from the calibration tank and shuts off all other sources. Calibration gas and dilution air will go through the detector.

Open span gas tank valve

span toggle switch up (on), others down (off)
set flow to 3.5 L/min using regulator on tank
set analyzer to range 3
wait for a stable reading (about 30 to 60 seconds)
record
turn off all calibration gas tank valves
all toggle switches off

Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.

Calculate the dilution ratio based on span gas by dividing the Diluted span by the undiluted span.

If the Dilution ratios do not agree within 5% - DO NOT PROCEED****. Use $100*(DR_{Span} - DR_{Flow})/DR_{Flow}$ to calculate the % difference.

**** check calculations, check that values for ppm and flows make sense, remeasure everything. If it still does not agree, call Mike or Mark

START RUN

Set valve so that 1, 2, 5 = on; 3, 4=off; all calibration tank valves off

Record the start time. Use the computer clock for all times or set your watch to the computer time.

Make sure analyzer is on appropriate range, usually range 3, to keep THC reading on computer between 60 and 750.

Monitor system, as needed. Record system condition at least hourly.

End time should be no more than 3 hours from start time.

POST-SAMPLE PROCEDURE

AT END OF RUN

Record your name as the operator.

Event = the drying cycle. Run = the 3-hour interval.

Operator, that's you. Date and time are now, as you start the data collection process.

AMBIENT DATA

Call 9-754-0081 and get temperature and altimeter

Local pressure = (Altimeter - 0.23) x 3.3867

Read the laboratory temperature from the thermometer.

Fill out appropriate information on Pre-sample side of data sheet for next run. This will save time in between runs.

END TIME

Record computer time.

DO NOT adjust dilution gas yet.

CHECK DILUTION FLOW AFTER RUN

Set valves so that 1, 3 = on; 2=off; 4=vent. This allows gas to flow out of the vent from the calibration tank and shuts off all other sources. Calibration gas and dilution air will go through the detector.

Open span gas tank valve

span toggle switch up (on), others down (off) set flow to 3.5 L/min using regulator on tank wait for a stable reading (about 30 -60 seconds) record all toggle switches off

Sample flow rate. Set valves so that 1=on; 2, 3 = off; 4=meter. This allows gas to flow only from the meter and the dilution to the detector.

Use the Gilibrator to take 5 readings of the sample flow rate (SFR). This is the flow through the analyzer with dilution on.

Make sure the average does not include any "bad" readings

Record the average, L/min = cc/min / 1000

Write "Post-SFR" on the Gilibrator printout.

Read dilution flow meter
To calculate the L/min, divide scfh by 2.12
Turn off dilution flow meter using valve 1

Total flow rate. Set valves so that 1, 2, 3 = off; 4=meter. This allows gas to flow only from the meter to the detector.

Use the Gilibrator to take 5 readings of the total flow rate (TFR). This is the total flow drawn by the analyzer and should be about 2.6 L/min Make sure the average does not include any "bad" readings Record the average, L/min = cc/min / 1000 Write "Post-TFR" on the Gilibrator printout.

CHECK CALIBRATION OF ANALYZER

Set valves so that 1, 2 = off; 3=on; 4=vent. This allows gas to flow out of the vents from the calibration tanks and shuts off all other sources. Only calibration gas should go through the detector.

Span gas tank valve should be open

span toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

set analyzer to range 4

wait for a stable reading (about 30 -60 seconds)

read analyzer (do not adjust pot settings), record, for example, 1.50 as 1500

read computer (should read about 152 due to range 4 setting)

note pot setting

check for within tolerance - between 1483 and 1573

Open mid gas tank valve

mid toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

set analyzer to range 3

wait for a stable reading (about 30 -60 seconds)

read analyzer (do not adjust pot settings), record, for example, 8.50 as 850

read computer (should read same as analyzer)

check for within tolerance

Open the zero gas tank valve

zero toggle switch up (on), others down (off)

set flow to 3.5 L/min using regulator on tank

wait for a stable reading (about 30 -60 seconds)

read analyzer (do not adjust pot settings)

read computer note pot setting

Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.

Calculate the dilution ratio based on gas flow by dividing the Sample Flow Rate by the Total Flow Rate.

Calculate % difference as 100 * {Absolute Value (DR_{Span}-DR_{Flow})} / DR_{Flow}

Record the time now as the end time for check.

Tear off the four sets of Gilibrator readings (Pre-TFR, Pre-SFR, Post-SFR, Post-TFR) and staple to paper with other records.

Start Pre-Sample procedure for next run.

Appendix 2. Data in Electronic Form

Appendix 3. Samples of Field Data Sheets OSU, Wood Science and Engineering Columbia Vista Corp., June, 2005 22

	Line	Vac.	inHg	- verbby															
		F/M	mL/min																
		Dilution	SCFM	1,9	19	1,9	1,9	33	35	3,8	8.0	82	5,5	5.6	36	30	3.1	31	18
	Flows	Flow 3 🖊	SCFH										,						
		Flow 2	L/min	0	Q	0	0	0	0	0	0	0	9	0	0	0	0	0	
		Flow 1	L/min	961	S	5	S	7	2	6	6	9	9	8	0C	2	۵	7	//
		Chiller	၁့																
		Line	٩°	273	373	23	1774	137KC	7x	$\mathcal{Z}\mathcal{Z}$	273	233	72	274	12/2	KC	275	525	11/11
Time 75	atures	Wet-bulb	၁့	220	347	49,7	1,49	179	199	1199	0.89	427	6'89	68,7	4.63	70.4	71,4	70,00	7117
Date 6-3-0	Temperatures	Dry-bulb ✓	၁့	32.2	394	5, 15	161	8/89	700	000	100	728	734	738	749	9'9/	786	166	000
9:37 9:30		Valve	၁့	145	SHI	541	SH	941	ShI	Sh)	,	341	541	145	145	145	145	Shi	1177
Start: End:		Вох	၁့	125	125	125	125	125	551	126	126	125	126	126	126	901	126	126	101
	Run		#		*	. —		8	7	3	$ \uparrow $	カー	5	9	7	8	6	0/	, ,
/ista	Run	time 🗸	hrs	10,00	1.14	1:08	ES 14	7,45	15:01	12832	22:20	からわと	the of	87 F	K.K	4555	\$3:38	TE 109	761
Charge: 1 Columbia Vista Page:	Clock	time		8C.6	11/11	13,35	16511	17.12	87)1	21:59 1	て イナイ	10,01	15.51	44	13iB	1:33	_) 00: O	7

Charge: Date:

Columbia 1

2-Jun-05

Boa	ard		Weights		Moisture	contents	Notes
		Initial Wt.	Final Wt.	Oven	Initial	Final	
		kg	kg	kg	%	%	
1	1	5.735	4.990	4.575	25.4	9.1	
1	2	7.185	6.215	5.610	28.1	10.8	
1	3	6.735	5.470	4.945	36.2	10.6	
1	4	6.150	5.385	4.920	25.0	9.5	
1	5	6.760	5.890	5.330	26.8	10.5	
1	6	6.095	5.265	4.755	28.2	10.7	
1	7	6.880	5.915	5.360	28.4	10.4	
1	8	5.630	4.840	4.410	57.7	9.8	
1	9	6.955	5.670	5.130	13.9	10.5	
1	10	5.845	5.045	4.575	48.9	10.3	
1	11	6.810	5.875	5.315	17.0	10.5	
1	12	6.220	5.430	4.940	25.9	9.9	
1	13	8.325	6.245	5.600	48.7	11.5	
. 1	14	7.330	6.260	5.670	29.3	10.4	
1	15	5.895	5.030	4.540	29.8	10.8	
1	16	6.985	6.075	5.460	27.9	11.3	
1	17	6.990	5.465	4.940	41.5	10.6	
1	18	6.195	5.430	4.945	25.3	9.8	
1	19	6.575	5.810	5.265	24.9	10.4	
1	20	5.925	5.210	4.775	24.1	9.1	

Sums: Averages: 131.220

111.515

101.060

	29.8	10.3				
--	------	------	--	--	--	--

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - PRE

BACKGR	OUND INFORMA	TION		
Event (kiln	charge): Colum	<u>bia Vista - 1</u>	Time now :	7:19A
Run (samp	ole):	·····	Dry-bulb tempe	rature: <u> 55 </u>
Operator:	Molota	<u> </u>	Wet-bulb tempe	erature:150
Date:	June 2, C)5_	Target Dilution	Ratio (TDR): <u>0.66</u>
	,			
AMBIENT			·	
Laborator	y temperature:	<u>25</u> °c		
				4.0
ANALYZE	R CALIBRATIO		· ·	1, 2 = off; 3=on; 4=vent
	Analyzer, ppm	Computer	Within range	Pot settings
zero	(0)		does not appl	y 480
span	905 (905)		does not appl	y 249
mid	410 (412)		379 to 437	none
SET DILU	TION FLOW BE	FORE RUN		
Total flow	rate (TFR):	2,629	_ L/min	[1, 2, 3 = off; 4=meter]
Target		0894	l /maim	[TED ~ /4 DD) 1
	ition flow rate (TE	1205	_ L/min	[TFR x (1 - DR)]
san	nple flow rate (TS	6FR) <u>1,732</u>	_L/min	[TFR x DR]
Set and re	ead dilution meter		scfh	[scfh = L/min * 2.12]
Sample flo	ow rate (SFR):	1,690	L/min	on; 2, 3 = off; 4=meter]
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Dil}	uted 582	0.643	0,642	0,5
	(3'5))		
START T	ME: <u> </u>	_ ['	1, 2, 5 = on; 3,	4 = off; tank valves off]
ANALYZE	R RANGE:	2_	[60 < co	omputer reading < 750]

FIELI	D DATA SHEET	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST
	Milota				Columbia Vista - 1
Time now:			•	Run (sample	(
AMDIENT					
AMBIENT [_	2/			
Laboratory	temperature:	<u>%</u> ℃			
END TIME:	5:01	_			
CHECK DIL	UTION FLOW	AFTER RUN		<u>[1,</u>	3=on; 2=off; 4=vent]
		Analyzer		, ,	Computer
Sı	oan _{Diluted}	1 618		618	
Sample flov	v rate (SFR) :	1,744	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution	on meter: 1.9	_ scfh	_ L/min		[L/min = scfh*0.472]
Total flow ra	ate (TFR): t out with all fou	7,661 r sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution rati	o (DR _{Flow}):	0.655			[SFR/TFR]
CHECK OF	ANALYZER CA	ALIBRATION		[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	n range	Pot settings
span	931	930	875	to 935	248
mid	420	419	379	to 437	none
zero	0	0	-45	to +45	480
Dilution rati	o (DR _{Span}):	0.663	-		[Span _{Diluted} / Span]
Dilution rati	o difference:	2.3	% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time fo	r check:	5:05	-		
Comments:	9:17-	9:19AM 17	79-	17.9	Ha VAC
_Spa	n guz ru	nning to	anal	ggn i	intel 9:30A

Appendix 4. Calibration Data

Certificate of Analysis: EPA Protocol Gas Mixture

Airgas Specialty Gases

12722 South Wentworth Avenue

Chicago, IL 60628 www.airgas.com

Cylinder Number:

CC166118

Reference Number: 54-124033817-1

Cylinder Pressure:

Expiration Date: Laboratory:

4/12/2008

Certification Date:

4/12/2005

ASG - Chicago - IL

Certified Concentrations

Component	Concentration	Accuracy	Analytical Princi	ple	Procedure	
PROPANE	905.3 PPM	+/- 1%	FID		G1	1 50
Air	Balance					

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences.

Notes:

Do not use cylinder below 150 psig.

Approval Signature

Reference Standard Information

Type

Balance Gas

Component

Cyl.Number SG9133675BAL Concentration 965.6 PPM

NTRM 1050606 PROPANE

Analytical Results

1st Component

PROPANE

1st Analysis Date:

04/12/2005

R 964.139

S 905.388

S 904.269

Z 0

R 965,706

Conc 906.8 PPM Conc 904.2 PPM

R 964.987 \$ 904.365 Conc 904.9 PPM

Z 0

05.3 PPM

BOC GASES VANCOUVER, WASHINGTON

Order Number

: GS-1575

Approx. Pressure **CGA Outlet**

: 2200 psig CGA-346

Fill Date **Expiration Date** : 07-JAN-2003 : 06-JAN-2008

Lot Number

: 26548

Zero 0.1 Air

CYLINDER CONTENT ANALYSIS

Component

Concentration

Oxygen Nitrogen 21.8 % Balance

Moisture Total Hydrocarbon <3.0 ppm

<0.1 ppm

BOC GASES PORT ALLEN, LOUISIANA

Cylinder# : CC5263

CU#

: 0102500577

Pressure

: 2000 psid

CGA Outlet: 152/590 BR 3360

Fill

: 13-JAN-2004

Expired

: 12-JAN-2007

Material

: C3H8 400M (AIR) CERT 152

CYLINDER CONTENT ANALYSIS

Component

Concentration

propane

412 com

BALANCE

Flow Calibration Record Sheet (200 SLM)

ERA#: 128989W

Customer: OREGON STATE UNIVERSITY

MKS Transfer Standard Type: 1559A-200L-SV

MKS Primary Standard Type: A-200-1

Serial Number: WS 136

Serial Number: 14952-1-1

Standard Flow Rate (SLM)	. UUT Flow Rate (SLM)	UUT Error (SLM)	Percent of full scale Error
00.0	0.000	0.000 .	0.000%
50.000	50.880	0.550	0.440%
100.000	99.880	-0.129	-0.060%
150.000	150.040	0.040	0.020%
290.000	- 200,000	0.000 -	0.000%

UUT Model: 1559A-200L-SV

UUT Serial # 000317785

UUT Process Gas:

UUT Range:

200 SLM

Process Gas used:

Date of Calibration: 05/10/00

Calibrated by: DP

Verified by:

Notes:

- 1. All units must be operated on regulated heat (Power on) for a minimum of of one hour before
- 2. Flowmeters antifor Controllers are Cajibrated at almospheric pressure.
- 3. This Calibration is referenced to 0 Degrees Cantigrade and 760 Tort.

TC Cal	bration 2002
Omega Calibrator C	PC Readout C
30.0 50.0	30.0 50.1
70.0 90,0 - 110.0	70.1 90.1 110.0

Field Data

	Line	Vac.	inHg	- make															
		F/M	mL/min																
		Dilution	SCFM	1,9	19	1,9	1,9	33	35	3,8	8,0	82	5,5	5.6	36	30	3.1	3./	12
	Flows	Flow 3 🖊	SCFH										,						
		Flow 2	L/min	0	Q	0	0	0	0	0	0	0	9	0	0	0	0	0	
		Flow 1	L/min	961	S	5	S	7	2	6	6	9	9	8	0C	2	6	7	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
		Chiller	၁့																
		Line	٩°	273	373	23	1774	137KC	7x	$\mathcal{Z}\mathcal{Z}$	273	233	72	274	12/2	KC	275	275	11/11
Time 75	atures	Wet-bulb	၁့	220	347	49,7	1,49	179	199	1199	0.89	427	6'89	68,7	4.63	70.4	11/4	70,7	しょい
Date 6-3-0	Temperatures	Dry-bulb ✓	၁့	32.2	394	5, 15	161	8/89	700	000	100	728	734	738	749	9'9/	786	1,66	000
9:37 9:30		Valve	၁့	145	145	541	SH	941	ShI	Sh)	,	341	541	145	145	145	145	145	111
Start: End:		Вох	၁့	125	125	125	125	125	551	126	126	821	126	126	126	901	126	126	///
	Run		#		*	. —		8	7	3	$ \uparrow $	カー	5	9	7	8	6	10	, ,
/ista	Run	time 🗸	hrs	10,00	1.14	1:08	ES 14	7,45	15:01	12832	22:20	からわと	the of	87 F	K.K	4555	\$3:38	75 '09	76.
Charge: 1 Columbia Vista Page:	Clock	time		8C.6	11:14	13,35	16511	17.12	87)1	21:59 1	て イナイ	10,01	15.51	44	13iB	1:33	15,165 6) 00: Q	7

			Line	F/M Vac.	mL/min inHg					-												
				Dilution	SCFM	13,0	3.0	30	2.9	2,8	2.8	2.5	2,5	3,7	23	2,3	2,3	2,25	2,2	22		
			Flows	Flow 3 🗸	SCFH	>	' /	\langle)))	()									
				Flow 2	L/min	0	0	0	0	0	0	0	0	0	Q	0	Q	9	0	D		
		,		Flow 1	L/min	∞	9	S	9	9	7	7	9	9	9	0	9	9	9	9		
				Chiller	ပွ	5	}		_	/		/										
				Line	ŗ.	4CE	12C	1774	かて	973	1273	1733	23	208	273	273	<i>خر</i>	233	274	HLC]		
\vdash		Γ		>																		L
Time		9:30	Temperatures	Wet-bulb	၁့	IZ	2013	170,4	C39	643	69.2	h 89	9'89	67.3	6'99	8.59	649	646	164.4	(3)		
	-		upe	^																		L
Date		50-8-9	Ter	Dry-bulb	၁့	2508	5'08	928	822	82.2	83.0	878	23,7	83,1	6:28	69.7	678	82,7	63,7	128		
		9		Valve	ပ	Shi	SHI	541	Shl	SHI	Sh/	Sh/	Sh/	SHI	Sh1	54/	35/	37	SA/	541		
	Start:	End:		Box	၁.	7C/	sel	901	501	ST/	15 h	921	921	901	901	2%	to Ci	ナで	781	hC/		
			Run		#	12	71	13	13	h	11	<i>ħ/</i>	15	9/	7	21	81	<u>(X</u>)	5	let		
	_			>											_							L
_	Vista	C	Run	time	hrs	10%	13:57	50:41	60:ME	thing	20:65	84:6C	31:16	38:15	多多	54.35	ı	10,00	51/69	4º16		
00000	Columbia Vista	Page:	Clock	time		14.38	9133	chi je	12:0	8:21	10:38	13,20	1523	ないと	など	予ら	5,23	वास्त	0151	7 20	8/	

Charge: Date:

Columbia 1

2-Jun-05

Boa	ard		Weights		Moisture	contents	Notes
		Initial Wt.	Final Wt.	Oven	Initial	Final	
		kg	kg	kg	%	%	
1	1	5.735	4.990	4.575	25.4	9.1	
1	2	7.185	6.215	5.610	28.1	10.8	
1	3	6.735	5.470	4.945	36.2	10.6	
1	4	6.150	5.385	4.920	25.0	9.5	
1	5	6.760	5.890	5.330	26.8	10.5	
1	6	6.095	5.265	4.755	28.2	10.7	
1	7	6.880	5.915	5.360	28.4	10.4	
1	8	5.630	4.840	4.410	57.7	9.8	
1	9	6.955	5.670	5.130	13.9	10.5	
1	10	5.845	5.045	4.575	48.9	10.3	
1	11	6.810	5.875	5.315	17.0	10.5	
1	12	6.220	5.430	4.940	25.9	9.9	
1	13	8.325	6.245	5.600	48.7	11.5	
. 1	14	7.330	6.260	5.670	29.3	10.4	
1	15	5.895	5.030	4.540	29.8	10.8	
1	16	6.985	6.075	5.460	27.9	11.3	
1	17	6.990	5.465	4.940	41.5	10.6	
1	18	6.195	5.430	4.945	25.3	9.8	
1	19	6.575	5.810	5.265	24.9	10.4	
1	20	5.925	5.210	4.775	24.1	9.1	

Sums: Averages: 131.220

111.515

101.060

	29.8	10.3				
--	------	------	--	--	--	--

BACKGR	OUND INFORMA	TION						
Event (kiln	charge): Colum	<u>bia Vista - 1</u>	Time now: 9:19 A					
Run (samp	ole):	·····	Dry-bulb temperature:					
Operator:	Molota	<u> </u>	Wet-bulb temperature: 150					
Date:	June 2, C)5_	Target Dilution	Ratio (TDR): <u>0.66</u>				
AMBIENT			·					
Laborator	y temperature:	<u>25</u> °c						
				4.0				
ANALYZE	R CALIBRATIO		· ·	1, 2 = off; 3=on; 4=vent				
	Analyzer, ppm	Computer	Within range	Pot settings				
zero	(0)		does not appl	y 480				
span	905 (905)		does not appl	y 249				
mid 4/0 (412)			379 to 437	none				
SET DILU	TION FLOW BE	FORE RUN						
Total flow	rate (TFR):	2,629	_ L/min	[1, 2, 3 = off; 4=meter]				
Target		0894	l /maim	[TED ~ /4 DD) 1				
	ition flow rate (TE	1205	_ L/min	[TFR x (1 - DR)]				
san	nple flow rate (TS	6FR) <u>1,732</u>	_L/min	[TFR x DR]				
Set and re	ead dilution meter		scfh	[scfh = L/min * 2.12]				
Sample flo	ow rate (SFR):	1,690	L/min	on; 2, 3 = off; 4=meter]				
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]				
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}				
Span _{Dil}	uted 582	0.643	0,642	0,5				
	(3'5))						
START T	ME: <u> </u>	_ ['	1, 2, 5 = on; 3,	4 = off; tank valves off]				
ANALYZE	ANALYZER RANGE: [60 < computer reading < 750]							

FIELI	D DATA SHEET	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST		
	Milota		Event (kiln charge): Columbia Vista - 1				
Time now:			•	Run (sample	(
AMDIENT							
AMBIENT [_	2/					
Laboratory	temperature:	<u>%</u> ℃					
END TIME:	5:01	_					
CHECK DIL	UTION FLOW	AFTER RUN		<u>[1,</u>	3=on; 2=off; 4=vent]		
		Analyzer		, ,	Computer		
Sı	oan _{Diluted}	1 618		618			
Sample flov	v rate (SFR) :	1,744	_ L/min	[1= on	, 2, 3 = off, 4=meter]		
Read dilution	on meter: 1.9	_ scfh	_ L/min		[L/min = scfh*0.472]		
Total flow ra	ate (TFR): t out with all fou	7,661 r sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]		
Dilution rati	o (DR _{Flow}):	0.655			[SFR/TFR]		
CHECK OF	ANALYZER CA	ALIBRATION		[1,	2=off; 3=on, 4=vent]		
	Analyzer	Computer	With	n range	Pot settings		
span	931	930	875	to 935	248		
mid	420	419	379	to 437	none		
zero	0	0	-45	to +45	480		
Dilution rati	o (DR _{Span}):	0.663	-		[Span _{Diluted} / Span]		
Dilution rati	o difference:	2.3	% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]		
End time fo	r check:	5:05	-				
Comments:	9:17-	9:19AM 17	79-	17.9	Ha VAC		
_Spa	n guz ru	nning to	anal	ggn i	intel 9:30A		

BACKGR	OUND INFORMA	TION						
Event (kiln	n charge): Colum	bia Vista - 1	Time now :	5:00				
Run (samı	ple):		Dry-bulb temperature:					
Operator:	_Mota		Wet-bulb temperature:					
Date:	June 2 05	<u> </u>	Target Dilution Ratio (TDR):					
AMBIENT	AMBIENT DATA							
Laborator	y temperature:	<u>}_</u> •c						
				4.0				
ANALYZER CALIBRATION COMMITTEE			Within range	1, 2 = off; 3=on; 4=vent				
	Analyzer, ppm	Computer		1,73				
zero	() (0)	0	does not appl					
span	905 (905)	905	does not app	y 228				
mid	412 (412)	412	379 to 437	none				
		d b		,				
SET DILU	ITION FLOW BEI	FORE RUN						
Total flow	rate (TFR):	2.654	_ L/min	[1, 2, 3 = off; 4=meter]				
Target dilu	ution flow rate (TD	OFR) 1.063	_ L/min	[TFR x (1 - DR)]				
sar	mple flow rate (TS	FR) <u>1,39</u>	L/min	[TFR x DR]				
Set and re	ead dilution meter	: 2.25	_ scfh	[scfh = L/min * 2.12]				
Sample flo	ow rate (SFR):	1,536	L/min	on; 2, 3 = off; 4=meter]				
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]				
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}				
Span _{Dil}	uted 525	0.580	0578	0,3				
START T	IME: <u>5:10</u>		1, 2, 5 = on; 3,	4 = off; tank valves off]				
ANALYZE	ER RANGE:	3	[60 < co	omputer reading < 750]				

	Λ	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST		
Operator: _	Molota	· E	vent (kilr	n charge):	Columbia Vista - 1		
Time now:	0.110		R	Run (sample): 2		
-				•			
AMBIENT	DATA						
Laboratory	temperature: 3	<u>2_</u> ℃					
END TIME:	9:49p	_					
CHECK DI	LUTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent]		
	-	Analyzer		Computer			
S	pan _{Diluted}	536			3)		
-	w rate (SFR) :	1,585	_ L/min	-	, 2, 3 = off, 4=meter]		
Read dilution meter: 23 scfh L/min [L/min = scfh*0.472]							
Total flow r	Total flow rate (TFR): $\frac{2\sqrt{678}}{\text{(attach print out with all four sets of data)}}$ L/min [1, 2, 3 = off; 4=meter]						
Dilution rat		0.592			[SFR/TFR]		
CHECK OF	ANALYZER CA	ALIBRATION		[1,	2=off; 3=on, 4=vent]		
	Analyzer	Computer	Withi	n range	Pot settings		
span	907	907	875	to 935	228		
mid	413	413	379	to 437	none		
zero	Ö	O	-45	to +45	470		
Dilution rat	io (DR _{Span}):	().591			[Span _{Diluted} / Span]		
Dilution rat	io difference:	0.15	% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]		
End time for	or check:	9:53					
Comments	Comments:						
<u> </u>							

\$58 455

BACKGRO	DUND INFORMA	HON					
Event (kiln	charge): Colum	bia Vista - 1	Time	now :	7:4	-8p	
Run (sam	ole): <u> </u>		Dry-b	Dry-bulb temperature:			
Operator:	Mota June 2 C		Wet-b	oulb tempe	erature	e: <u>/55</u>	
Date:	June 2 C	>5	Targe	t Dilution	Ratio	(TDR): <u>0,5</u>	_
	0						
AMBIENT	DATA						
	y temperature:	32 °c					
Laboratory	remperature						
ANALYZER CALIBRATION				[1, 2 = off; 3=on; 4=vent			
	Analyzer, ppm	Computer	Wi	thin range	;	Pot settings	
zero	(0)	0	doe	s not appl	у	470	
span	905 (905)	906	doe	s not appl	у	224	
mid	d 41 (412) 47		3	79 to 437		none	
SET DILU	TION FLOW BEI						
Total flow	rate (TFR):	2,68	<u>ノ</u> L/mii	n	[1, 2	2, 3 = off; 4=mete	er]
Target	ition flow rate (TD	OFR) 1.34	} L/mii	n		[TFR x (1 - DF	R) 1
	nple flow rate (TS	. 0([TFR x D	, -
	ead dilution meter	00:		•	ſs	scfh = L/min * 2.1	•
	ow rate (SFR):	1,28		n [1 =	-	2, 3 = off; 4=met	•
•	. ,		<u> </u>	. [, -			_
CHECK D	ILUTION FLOW	DR _{Span}	D	R	_	=on; 2=off; 4=ve Difference, %	
	Analyzer	[Span _{Diluted} /Span	n] [SFI	R _{Flow} R / TFR]	100*(D	PR _{Span} - DR _{Flow})/DR	Flow
Span _{Dili}	uted 434	0,480	0	1478		0,5	
START T	ime: <u>97,56 y</u>	<u>2</u>	[1, 2, 5	= on; 3,	4 = of	f; tank valves o	ff]
ANALYZE	R RANGE:	5		[60 < cc	mput	er reading < 75	0 1

FIELD DATA SHEET	FOR TOTAL HYD	ROCARBON ANAL	YZER - POST
Operator:Musta	E	event (kiln charge):	Columbia Vista - 1
Time now: 7.30	A	Run (sample): 3
		` '	
AMBIENT DATA			
Laboratory temperature:	2 °c		
END TIME: 7:30 Y	9		
CHECK DILUTION FLOW	AFTER RUN	[1,	3=on; 2=off; 4=vent.]
	Analyzer	1.30	Computer
Span _{Diluted}	1 10	1439	
Sample flow rate (SFR) :	_1,307	Z L/min [1= on	, 2, 3 = off, 4=meter]
Read dilution meter: 29		L/min	[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four	2.680 r sets of data)	_ L/min [1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	048	8	[SFR/TFR]
CHECK OF ANALYZER CA	ALIBRATION	[1.	2=off; 3=on, 4=vent]
Analyzer	Computer	Within range	Pot settings
span 3 00	901	875 to 935	224
mid 409	409	379 to 437	none
zero ()	0	-45 to +45	470
Dilution ratio (DR _{Span}):	0489		[Span _{Diluted} / Span]
Dilution ratio difference:	0,3	% [100*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time for check:	7:40		
Comments:			

BACKGR	OUND INFORMA	IION					
Event (kilr	n charge): <u>Columl</u>	oia Vista - 1	Time now:				
Run (sam	ple): <u> </u>	<u> </u>	Dry-bulb temperature:				
Operator:		The state of the s	Wet-bulb temperature:				
Date:	June 3 05		Target Dilution Ratio (TDR): _0,5				
AMBIENT	DATA						
Laborator	y temperature:	<u> </u>					
ANALYZE	R CALIBRATION	<u> </u>		1, 2 = off; 3=on; 4=vent]			
	Analyzer, ppm	Computer	Within range	Pot settings			
zero	(0)	0	does not appl	ly 475			
span	905 (905)	905	does not appl	ly 242			
mid	mid 41/ (412) 4/6		379 to 437	none			
SET DILU	ITION FLOW BEF						
Total flow	rate (TFR):	2.696	L/min	[1, 2, 3 = off; 4=meter]			
Target	ution flow rate (TD	FR)	L/min	[TFR x (1 - DR)]			
	nple flow rate (TS		 L/min	[TFR x DR]			
	ead dilution meter	00	_ scfh	[scfh = L/min * 2.12]			
	ow rate (SFR):	1,302		on; 2, 3 = off; 4=meter			
CHECK D	ILUTION FLOW	BEFORE RUN	-	[1, 3=on; 2=off; 4=vent]			
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}			
Span _{Dil}	luted 434	0.479	0,483	0,7			
	-, U-	7		,			
START T	IME:	[1, 2, 5 = on; 3,	4 = off; tank valves off]			
ANALYZI	ER RANGE:		[60 < cc	omputer reading < 750]			

FIEL	.D DATA SHEET	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST
Operator: _	Milota	E	vent (kilr	n charge):	Columbia Vista - 1
Time now:	15:41	· · · · · · · · · · · · · · · · · · ·	F	Run (sample):
	,				
AMBIENT		2.0			
Laboratory	temperature:	<u>30</u> •c			
END TIME:	: 1541				
					
CHECK DI	LUTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer		(Computer
S	pan _{Diluted}	140		<u> </u>	41
Sample flo	w rate (SFR) :	1,315	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read diluti	on meter: _2,8		_ L/min		[L/min = scfh*0.472]
Total flow r	rate (TFR): nt out with all fou	ったり (なんり) r sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution rat		0,494	<u>. </u>		[SFR/TFR]
CHECK O	F ANALYZER C	ALIBRATION	·	[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	Withi	n range	Pot settings
span	896	896	875	to 935	242
mid	408	406	379	to 437	none
zero	0,0	0.0	-45	to +45	475
Dilution rat	tio (DR _{Span}):	0.493	•		[Span _{Diluted} / Span]
Dilution rat	tio difference:	0.2	_% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time for	or check:	15:45	-		
Comments		6 . IL2/I	0- 01		
	10.71	Span = 434	K)=26	2	

BACKGR	OUND INFORMA	TION		, , , , , , , , , , , , , , , , , , , ,		
Event (kilr	n charge): <u>Colum</u>	bia Vista - 1	Time now :	3:45		
Run (sam	ple):5		Dry-bulb temperature:			
Operator:	Molota		Wet-bulb temperature:			
Date:	June 3,	05	Target Dilution Ratio (TDR):			
AMBIENT	DATA					
Laborator	y temperature:	<u>30</u> ℃	• .			
ANALYZE	R CALIBRATION	· · · · · · · · · · · · · · · · · · ·		1, 2 = off; 3=on; 4=vent]		
	Analyzer, ppm	Computer	Within range	Pot settings		
zero	- (0)	0	does not apply	475		
span	905 (905)	905	does not apply	245		
mid	411 (412)	412	379 to 437	none		
	ITION FLOW BE	FORE RUN	<u> </u>			
	rate (TFR):	<u> 4167</u>	/_ L/min	[1, 2, 3 = off; 4=meter]		
Target dilu	ution flow rate (TD	OFR)	L/min	[TFR x (1 - DR)]		
sar	mple flow rate (TS	FR)	L/min	[TFR x DR]		
Set and re	ead dilution meter	: <u>2.8</u>	scfh	[scfh = L/min * 2.12]		
Sample flo	ow rate (SFR):	1,26		on; 2, 3 = off; 4=meter]		
CHECK D	DILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]		
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow [SFR/TFR] 1	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}		
Span	luted 427	0,471	0,478	13		
START T	IME: 3:50	[1, 2, 5 = on; 3, 4 = off; tank valves off]			
ΔΝΔΙ ΥΖΙ	FR RANGE:	7)	160 < 001	mputer reading < 750 1		

FIELD DATA SHEET	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST
Operator: MiloTa	E	vent (kilı	n charge):	Columbia Vista - 1
Time now:	<u>:</u>	F	Run (sample):5
AMBIENT DATA				
Laboratory temperature:	· · · ·			
Laboratory temperature.	0			
END TIME:	<u>7</u>			
CHECK DILUTION FLOW	AFTER RUN		_	3=on; 2=off; 4=vent]
	Analyzer		(Computer
Span _{Diluted}	1 121		4	<i>5</i> /
Sample flow rate (SFR) :	1,328	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution meter:	scfh	_ L/min	i	[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all fou	r sets of data)	_L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	0.497	7		[SFR/TFR]
CHECK OF ANALYZER C	ALIBRATION		[1,	2=off; 3=on, 4=vent]
Analyzer	Computer	With	in range	Pot settings
span 920	(TEHE27920	875	to 935	245
mid 49	415	379	to 437	none
zero	0	-45	to +45	475
Dilution ratio (DR _{Span}):	0.497			[Span _{Diluted} / Span]
Dilution ratio difference:	(),0)	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time for check:	17:12			
Comments:				

BACKGRO	OUND INFORMA	TION	MATERIAL CONTRACTOR OF THE CON		
Event (kiln	charge): Colum	bia Vista - 1	Time now :	17:09	
Run (samp	ole):6		Dry-bulb tempe	rature:	
Operator:	Milota	Note the contract of the contr	Wet-bulb tempe	erature: <u> 158</u>	
Date:	M.lote June 3	05	Target Dilution	Ratio (TDR): <u>05</u>	
	AMBIENT DATA				
Laboratory	/ temperature:	<u>34</u> °c			
ANALYZER CALIBRATION [1, 2 = off; 3=on; 4=vent]					
ANALIZI	Analyzer, ppm	Computer	Within range	1	
zero	(0)	0	does not app	ly 24475	
span	705 (905)	904	does not app	ly 234	
mid	412)	410	379 to 437	none	
	•	•			
SET DILU	TION FLOW BE	FORE RUN	,		
Total flow	rate (TFR):	2.6/7	L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	tion flow rate (TE	OFR)	L/min	[TFR x (1 - DR)]	
san	nple flow rate (TS	SFR)	_ L/min	[TFR x DR]	
Set and re	ead dilution meter	= 2,9	_ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,286	L/min	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN	1	[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dilt}	ıted 43	0,476	0,480	0.8	
	17.1/				
START TI	ME: 1//16	[1, 2, 5 = on; 3,	4 = off; tank valves off]	
ANALYZE	R RANGE: <u>3</u>		[60 < co	omputer reading < 750]	

FIEL	D DATA SHEET	FOR TOTAL HYD	ROCARBO	N ANAL	YZER - POST
Operator: _	Milata	Event (kiln charge): Columbia Vista - 1			
Time now:	now: 10 15 p Run (sample):				
AMBIENT					· · · · · · · · · · · · · · · · · · ·
Laboratory	temperature:	<u>33</u> ℃			
END TIME	: 10:16	-			
CHECK DI	LUTION FLOW A	FTER RUN		[1,	3=on: 2=off: 4=vent]
		Analyzer		1/ 07	Computer
S	pan _{Diluted}	421		HI	14)
	w rate (SFR) :	1,291	L/min	[1= on	, 2, 3 = off, 4=meter]
Read diluti	on meter: 29	0/00	_ L/min	1	[L/min = scfh*0.472]
Total flow r	rate (TFR): it out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution rat		0.48			[SFR/TFR]
CHECK OF	ANALYZER CA	LIBRATION		<u>[1,</u>	2=off; 3=on, 4=vent]
	Analyzer	Computer	Within ra	ange	Pot settings
span	905	905	875 to	935	234
mid	411	4/1	379 to 4	437	none
zero	0	Ö	-45 to -	⊦ 45	48
Dilution rat	io (DR _{Span}):	0.47/			[Span _{Diluted} / Span]
Dilution rat	io difference:	2.0	% [100*(<i>i</i>	Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time for	or check:	10:19			
Comments	:				
the state of the s					

BACKGR	OUND INFORMA	TION			
Event (kilr	n charge): Colum	ge): Columbia Vista - 1 Time now:			
Run (sam	Run (sample):			rature:	
Operator:	Milsta		Wet-bulb temperature:/6/		
	June 3, 0)5_	Target Dilution	Ratio (TDR): <u>0.45</u>	
8	,				
AMBIENT	DATA				
Laboratory temperature: 34 °C					
ANALYZE	R CALIBRATION	1		1, 2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	Pot settings	
zero	(0)	0	does not app	ly 474	
span	905 (905)	904	does not app	ly 234	
mid	411 (412)	411	379 to 437	none	
SET DILU	ITION FLOW BEI	FORE RUN			
Total flow	rate (TFR):	2.673	_ L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	ution flow rate (TD	0FR)	L/min	[TFR x (1 - DR)]	
sar	mple flow rate (TS	SFR)	L/min	[TFR x DR]	
Set and re	ead dilution meter	: <u>3,0</u>	_ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1.184	L/min	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dil}	uted 396	0438	0,443	[12	
START T	10,00	20	1 2 5 - am: 2	A = offi tonk values off 1	
SIAKII	IIVIC: 10.00	1	i, z, a = on; 3,	4 = off; tank valves off]	
ΔΝΔΙ ΥΖΙ	ER RANGE:	3	1 60 < cc	omputer reading < 750 1	

Operator: Mlota Time now: 7:15A	Event (kiln charge): Columbia Vista - 1 Run (sample):			
AMBIENT DATA Laboratory temperature: 31	°C			
END TIME:				
CHECK DILUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
	Analyzer			Computer
Span _{Diluted}	397			397
Sample flow rate (SFR):	1,191	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution meter: <u>30</u>	scfh	_ L/min		[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four	っしつと sets of data)	∑ L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	0,446			[SFR/TFR]
CHECK OF ANALYZER CA	LIBRATION		[1.	2=off; 3=on, 4=vent]
Analyzer	Computer	With	n range	Pot settings
span 897	897	875	to 935	234
mid 408	407	379	to 437	none
zero ()	8		to +45	474
Dilution ratio (DR _{Span}):	0.443			[Span _{Diluted} / Span]
Dilution ratio difference:	0,7	% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time for check:	7:19			
Comments:				

BACKGRO	OUND INFORMA	TION			
Event (kiln	Event (kiln charge): Columbia Vista - 1 Time now:				
Run (samp	ole):		Dry-bulb tempe		
Operator: Wet-bulb temperature: Date: Unit Target Dilution Ratio (T				erature: <u>/60</u>	
Date:	June 4. (<u> </u>		Ratio (TDR): <u>0,45</u>	
			· ·	,	
AMBIENT DATA					
	y temperature:	S °C			
Laboratory	y temperature.				
ANALYZER CALIBRATION [1, 2 = off; 3=on; 4=ve				1, 2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	Pot settings	
zero	0,00	6,0	does not app	ly 484	
span	905 (905)	905	does not app	ly 238	
mid	411 (412)	411	379 to 437	none	
SET DILU	TION FLOW BEI	-			
Total flow	rate (TFR):	2,660	L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	ition flow rate (TD	OFR)	L/min	[TFR x (1 - DR)]	
san	nple flow rate (TS	SFR)	L/min	[TFR x DR]	
	ead dilution meter	3,0	_ _ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,163	L/min [1 =	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span	uted 391	0,432	0437	1,2	
START T	IME: / do		1, 2, 5 = on; 3,	4 = off; tank valves off]	
ANAL YZE	ER RANGE:	3	[60 < cc	omputer reading < 750 1	

Operator: _	Milota	E	vent (kilr	charge):	Columbia Vista - 1
Time now:	Milota 258.	<u>} </u>	R	tun (sample):8
AMBIENT Laboratory	DATA temperature:	°c			
END TIME:	2:58				
CHECK DI	LUTION FLOW A		<u> </u>		3=on; 2=off; 4=vent]
		Analyzer		20	Computer
S	pan _{Diluted}	100	<u>.</u>		0
Sample flow	w rate (SFR) :	1-182	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution	on meter: 3,0	scfh	_ L/min		[L/min = scfh*0.472]
Total flow r (attach prin	ate (TFR): it out with all four	$\frac{2.694}{\text{sets of data}}$	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution rat		0440	_		[SFR/TFR]
CHECK OF	ANALYZER CA	LIBRATION		[1.	2=off; 3=on, 4=vent]
	Analyzer	Computer	Withi	n range	Pot settings
span	903	902	875	to 935	238
mid	409	407	379	to 437	none
zero	0	0	-45	to +45	461
Dilution rat	io (DR _{Span}):	0,430	-		[Span _{Diluted} / Span]
Dilution rat	io difference:	2.3	% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]
End time fo	or check:	3:02	<u>)</u>		
Comments	:				

BACKGRO	DUND INFORMA	TION			
Event (kiln charge): Columbia Vista - 1			Time now:2:59		
Run (samp	ole):9		Dry-bulb tempe	rature:	
Operator:	Milota		Wet-bulb tempe	erature: <i>160</i>	
Date:	IV	S	Target Dilution Ratio (TDR): 0,45		
AMBIENT	DATA				
Laboratory temperature:3\frac{1}{2} \cdot \cd					
ANALYZER CALIBRATION [1, 2 = off; 3=on; 4=vent				1, 2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	1	
zero	(0)	0	does not appl	ly 44	
span	905 (905)	905	does not appl	y 237	
mid	412)	409	379 to 437	none	
0FT DU 11	TION 51 OW 551	CODE DUN			
	TION FLOW BEI	1 197			
Total flow	rate (TFR):	4,60	L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	ition flow rate (TD	PFR)	L/min	[TFR x (1 - DR)]	
san	nple flow rate (TS	FR)	_ L/min	[TFR x DR]	
Set and re	ead dilution meter	: <u> </u>	_ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,149	_ L/min [1 =	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{-Flow}	
Span _{Dill}	uted 38)	0,421	0427	1+3	
START T	IME: <u>3:05 f</u>	<u> </u>	1, 2, 5 = on; 3,	4 = off; tank valves off]	
ANALYZE	R RANGE:	<i>></i>	[60 < co	omputer reading < 750]	

	<i>1</i>	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST
Operator: _	Moto	Mulota Event (kiln charge): Columbia Vista - 1			
Time now:	a.r.l		F	Run (sample):
AMBIENT	DATA				,
	temperature:	33 °C			,
Laboratory	temperature				
END TIME	: 951p	- -			
CHECK DI	LUTION FLOW	FTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer			Computer
S	pan _{Diluted}	1 381		3	80
•	w rate (SFR) :	1.16	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read diluti	on meter: _ろ。		_ L/min		[L/min = scfh*0.472]
Total flow r (attach prir	rate (TFR): nt out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution rat	tio (DR _{Flow}):	0,432			[SFR/TFR]
CHECK O	F ANALYZER CA	LIBRATION		[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	in range	Pot settings
span	876	896	875	to 935	257
mid	406	406	379	to 437	none
zero	0	\mathcal{O}	-45	to +45	464
Dilution rat	tio (DR _{Span}):	0.425			[Span _{Diluted} / Span]
Dilution rat	tio difference:	1,7	% [10	00*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time fo	or check:	9:55			
Comments	:				

BACKGR	OUND INFORMA	TION			
Event (kiln charge): Columbia Vista - 1			Time now: 9:51		
Run (sample):		Dry-bulb tempera	ature:		
Operator:	M Octa		Wet-bulb tempera		
Date:	June 4	05_	Target Dilution R	atio (TDR): <u>0.45</u>	
	AMBIENT DATA				
Laboratory temperature: 33 °C					
ΔΝΔΙ ΥΖΕ	R CALIBRATION	ı	Г 1	, 2 = off; 3=on; 4=vent.]	
AUALIE	Analyzer, ppm	Computer	Within range	Pot settings	
zero	O (0)	0	does not apply	464	
span	905 (905)	905	does not apply	240	
mid	412 (412)	411	379 to 437	none	
SET DILU	ITION FLOW BEI	ORE RUN			
Total flow	rate (TFR):	2.610	L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	ution flow rate (TD	9FR)	L/min	[TFR x (1 - DR)]	
sar	mple flow rate (TS	FR)	L/min	[TFR x DR]	
Set and re	ead dilution meter	$: \frac{3!}{3!}$	_ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,185	L/min [1 = c	on; 2, 3 = off; 4=meter]	
CHECK D	DILUTION FLOW	BEFORE RUN	1	1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow [SFR/TFR] 10	Difference, % 00*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dil}	luted 396	0,438	0.441	0,6	
Qr-7					
START T	IME:	2 [1, 2, 5 = on; 3, 4	= off; tank valves off]	
ANALVZ	ED DANGE:	3	[60 < com	anutar reading < 750 1	

Operator: _	Milita	E	Event (kiln charge): Columbia Vista - 1			
Time now:	7:20		F	Run (sample	e):(<i>(</i>)	
AMBIENT Laboratory	temperature: 3	<u></u> ℃				
END TIME:	7:20					
CHECK DI	LUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]	
		Analyzer			Computer	
s	pan _{Diluted}	379 3	77	3	176	
Sample flow	w rate (SFR) :	1.13)	_ L/min	[1= on	, 2, 3 = off, 4=meter]	
Read dilution	on meter: 3	scfh	_ L/min		[L/min = scfh*0.472]	
Total flow r (attach prin	ate (TFR): It out with all four	ュルフチ sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]	
Dilution rat	io (DR _{Flow}):	0.423			[SFR/TFR]	
CHECK OF	ANALYZER CA	LIBRATION		[1.	2=off; 3=on, 4=vent]	
	Analyzer	Computer	Withi	n range	Pot settings	
span	890	890	875	to 935	240	
mid	409	404	379	to 437	none	
zero		Ó	-45	to +45	44	
Dilution rat	io (DR _{Span}):	0424			[Span _{Diluted} / Span]	
Dilution rat	io difference:	0,15	% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]	
End time fo	or check:	7:25				
Comments	:					

BACKGR	OUND INFORMA	TION				
Event (kilr	Event (kiln charge): Columbia Vista - 1			Time now :		
Run (sample):			Dry-bulb tempe	erature:		
Operator:	Milston June 5, 0.		Wet-bulb temp	erature: 158		
Date:	June 5, 0	5		Ratio (TDR): 0,45		
sia sa sa			•	· /		
AMBIENT	DATA					
Laboratory temperature: 32 °C						
ANALYZER CALIBRATION [1, 2 = off; 3=on; 4=ve				1, 2 = off; 3=on; 4=vent]		
	Analyzer, ppm	Computer	Within range	e Pot settings		
zero	(0)	0	does not app	ly 464		
span	905 (905)	906	does not app	ly 250		
mid	412 (412)	413	379 to 437	none		
		· · · · · · · · · · · · · · · · · · ·				
	TION FLOW BEF					
Total flow	rate (TFR):	3.680	L/min	[1, 2, 3 = off; 4=meter]		
Target dilu	ıtion flow rate (TD	FR)	_ L/min	[TFR x (1 - DR)]		
san	nple flow rate (TS	FR)	_ L/min	[TFR x DR]		
Set and re	ead dilution meter:		_ scfh	[scfh = L/min * 2.12]		
Sample flo	ow rate (SFR):	1,172		on; 2, 3 = off; 4=meter]		
CHECK D	ILUTION FLOW I	BEFORE RUN		[1, 3=on; 2=off; 4=vent]		
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}		
Span _{Dil}	uted 393	0.434	0.437	0,7		
START T	START TIME:					
ANALYZE	R RANGE:	3	[60 < co	omputer reading < 750]		

FIFI	D DATA SHEET	FOR TOTAL HYD	DROCAR	RON ANAI	YZER - POST	
	Mlota		Event (kiln charge): Columbia Vista - 1			
Time now:	2:300		F	Run (sample):	
AMBIENT	DATA					
Laboratory	_aboratory temperature:32 °C					
END TIME:	:_2:30	_				
CHECK DI	LUTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent	
		Analyzer			Computer	
s	pan _{Diluted}	1 389		39	89	
•	w rate (SFR) :	1.162	_ L/min	-	, 2, 3 = off, 4=meter	
Read diluti	on meter: 3	scfh	_ L/min		[L/min = scfh*0.472]	
Total flow r	rate (TFR): nt out with all fou	r sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter	
Dilution rat		0,434	_		[SFR/TFR]	
CHECK OF	ANALYZER C	ALIBRATION		<u>[1,</u>	2=off; 3=on, 4=vent	
	Analyz <u>er</u>	Computer	With	in range	Pot settings	
span	905	904	875	to 935	250	
mid	411	410	379	to 437	none	
zero	0	Ô	-45	to +45	464	
Dilution rat	io (DR _{Span}):	0.430			[Span _{Diluted} / Span	
Dilution ratio difference: % [100*(Abs(DR _{Span} - DR _{Flow}))/DR _{Flow}				Span - DR Flow))/DR Flow		
End time for Comments		2134				

Time now :				
e:				
e: <u>160 —</u>				
(TDR):				
AMBIENT DATA Laboratory temperature: 32 °C				
off; 3=on; 4=vent]				
Pot settings				
464				
247				
none				
				
2, 3 = off; 4=meter]				
LTED (4 DD) 1				
[TFR x (1 - DR)]				
[TFR x DR]				
scfh = L/min * 2.12]				
2, 3 = off; 4=meter]				
=on; 2=off; 4=vent]				
Difference, % DR _{Span} - DR _{Flow})/DR _{Flow}				
1,5				
,				
ff; tank valves off]				
ANALYZER RANGE: 5 [60 < computer reading < 750]				

Operator: _	Mileta	Event (kiln charge): Columbia Vista - 1			
Time now:	9:33		F	Run (sample):12
AMBIENT					
Laboratory	temperature: 3	°C			
END TIME:	9:34				
CHECK DI	LUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer			Computer
S	pan _{Diluted}	383			382
Sample flow	w rate (SFR) :	1.151	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution	on meter: 3,	scfh	_ L/min		[L/min = scfh*0.472]
Total flow r	į	2,679	_L/min	[1	, 2, 3 = off; 4=meter]
Dilution rat	io (DR _{Flow}):	0.430	<u> </u>		[SFR/TFR]
CHECK OF	ANALYZER CA	LIBRATION		[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	in range	Pot settings
span	897	895	875	to 935	247
mid	407	407	379	to 437	none
zero	0	0	-45	to +45	464
Dilution rat	io (DR _{Span}):	0.427			[Span _{Diluted} / Span]
Dilution rat	io difference:	0,6	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time fo	or check:	9:39			
Comments	:				
		***	····		

BACKGR	OUND INFORMA	TION				
Event (kiln charge): Columbia Vista - 1			Time now: 9:33			
Run (sample): 3			Dry-bulb temper	ature:		
Operator:	Mota		Wet-bulb tempe	rature: <u>158</u> —		
Date:	June 5, C	<u>5</u>	Target Dilution I	Ratio (TDR): _ <i>0,</i> 5		
AMBIENT DATA						
Laborator	y temperature:	<u>31</u> °c				
ANALYZE	R CALIBRATION	1	1	1, 2 = off; 3=on; 4=vent]		
	Analyzer, ppm	Computer	Within range	Pot settings		
zero	0 (0)	0	does not apply	464		
span	905 (905)	905	does not apply	7 352		
mid	412 (412)	409	379 to 437	none		
Total flow	rate (TFR):	2,685	L/min	[1, 2, 3 = off; 4=meter]		
dilt	ution flow rate (TD)FR)	L/min	[TFR x (1 - DR)]		
sar	mple flow rate (TS	FR)	L/min	[TFR x DR]		
Set and re	ead dilution meter		scfh	[scfh = L/min * 2.12]		
Sample flo	ow rate (SFR):	1,293	L/min	on; 2, 3 = off; 4=meter]		
CHECK D	DILUTION FLOW			[1, 3=on; 2=off; 4=vent]		
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}		
Span _{Dil}	uted 43 A	0.480	0,482	0.4		
START T	START TIME:					
ΔΝΔΙ ΥΖΙ	ER RANGE:	<i>)</i>	1 60 < 00	mnuter reading < 750 1		

	D DATA SHEET Molota	FOR TOTAL HYD	vent (kili	n charge):	Columbia Vista - 1
Time now:			F	Run (sample):
AMBIENT	DATA				
Laboratory	temperature:	°C			
END TIME:	7:46A	_			
CHECK DI	LUTION FLOW				3=on; 2=off; 4=vent
s	pan _{niluted}	Analyzer		43	Computer 2
Sample flow	w rate (SFR) :	1,299	_ L/min	[1= on	, 2, 3 = off, 4=meter
Read dilution	on meter: 2^{0}	scfh	_ L/min	!	L/min = scfh*0.472
Total flow r (attach prin	rate (TFR): nt out with all fou	r sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter
Dilution rat	io (DR _{Flow}):	0.487			[SFR/TFR]
CHECK OF	ANALYZER C	ALIBRATION		[1,	2=off; 3=on, 4=vent
	Analyzer	Computer	With	in range	Pot settings

CHECK OF ANALYZER CALIBRATION			[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	Within range	Pot settings
span	893	894	875 to 935	252
mid	407	406	379 to 437	none
zero	0	6	-45 to +45	464

Dilution ratio (DR _{Span}):	0.485	[Span _{Diluted} / Span]
Dilution ratio difference:	<u></u>	[100*(Abs(DR _{Span} - DR _{Flow}))/DR _{Flow}]
End time for check: Comments:	7:51	

BACKGR	OUND IN	FORMA	TION				
Event (kiln charge): Columbia Vista - 1			Time now:				
Run (sam	ple):	14			Dry-bulb temperature:		
Operator:	MI	ota			Wet-bulb temp	eratu	re: 15 6 -
Date: June 6 05						o (TDR): 0.5	
	1				g		
AMDIENT DATA							
AMBIENT)()	-			
Laborator	y temper	ature: _	<u>{</u> 0 °C				
ANALYZE	R CALI	BRATIO	1			[1, 2	= off; 3=on; 4=vent]
	Analyz	er, ppm	Com	puter	Within rang	е	Pot settings
zero	0	(0)		J	does not app	ly	480
span	905	(905)	90	+	does not apply 28		284
mid	411	(412)	411		379 to 437		none
SET DILU	ITION FL	OW BE	FORE RU	N \((!O		····	T
Total flow	rate (TF	R):		1.643	_ L/min	[1	, 2, 3 = off; 4=meter]
Target dilu	ution flow	rate (TE	OFR)		_ L/min	[TFR x (1 - DR)	
sar	nple flow	rate (TS			_ L/min	[TFR x DR	
Set and re	ead diluti	on meter	: <u> </u>	3'8	_ scfh	١	[scfh = L/min * 2.12]
Sample flo	ow rate (SFR):		1,289	_ L/min [1	= on;	2, 3 = off; 4=meter]
CHECK D	ILUTION	FLOW	BEFORE	RUN		[1,	3=on; 2=off; 4=vent]
	A	nalyzer	DR [Span _{Dill}	Span uted/Span]	DR _{Flow} [SFR/TFR]	100*	Difference, % (DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Dil}	uted	144	0.4	91	0,488		0.6
START T	START TIME: 8.94 [1, 2, 5 = on; 3, 4 = off; tank valves off]						
ANALYZE	ANALYZER RANGE: [60 < computer reading < 750]						

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - POST						
Operator: Mild			vent (kiln charge): Columbia Vista - 1			
Time now: 15:14			Run (sample	1/1		
Time now.			turi (Sample)·		
AMBIENT DATA						
Laboratory temperature: 2	3 °c					
END TIME: 15:15						
CHECK DILUTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]		
	Analyzer			Computer		
Span _{Diluted}	438		4	-37		
Sample flow rate (SFR) :	1.258	_ L/min	[1= on	, 2, 3 = off, 4=meter]		
Read dilution meter: 2.8	scfh	_ L/min	!	[L/min = scfh*0.472]		
Total flow rate (TFR): (attach print out with all four	sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]		
Dilution ratio (DR _{Flow}):	0,483	_		[SFR/TFR]		
CHECK OF ANALYZER CA	LIBRATION		ſ 1 .	2=off; 3=on, 4=vent]		
Analyzer	Computer	Withi	n range	Pot settings		
span 90%	907	875	to 935	284		
mid 414	413	379	to 437	none		
zero	<u> </u>	-45	to +45	480		
Dilution ratio (DR _{Span}):	0.482			[Span _{Diluted} / Span]		
Dilution ratio difference:	0,07	% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]		
End time for check:	3:190	·				
Comments: San diluted 443 @ 10:37A lab-@ 24						
Cooled Wah	20Tanea #15	@ 1 3 + A	14	XM-(a) JY		
Span dilated = 4:	39 @ 1:70	2 Ou	bat	J3C		

BACKGROUND INFORMATION					
Event (kilr	n charge): Colum	bia Vista - 1	Time now:		
Run (sam	ple):		Dry-bulb tempe	erature:	
Operator: Mlota			Wet-bulb temp	erature: <u>155</u>	
Date:	June 6, 20	05	Target Dilution	erature: <u>/ 5 </u>	
AMBIENT DATA					
Laborator	y temperature:	<u>23</u> ℃			
ANALYZE	ER CALIBRATION	1	ı	1, 2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	' 1	
zero	(0)	0	does not app	ly 475	
span	965 (905)	905	does not app	ly 282	
mid	412 (412)	411	379 to 437	none	
SET DILU	ITION FLOW BEF				
Total flow	rate (TFR):	2.614	L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	ution flow rate (TD	PFR)	L/min	[TFR x (1 - DR)]	
sar	nple flow rate (TS	FR)	L/min	[TFR x DR]	
Set and re	ead dilution meter	: 2.8	_ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,332	L/min	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dil}	uted 463	0.512	0.510	0,4	
				·	
START T	IME: <u>3722</u>	[1, 2, 5 = on; 3,	4 = off; tank valves off]	
ANALYZER RANGE: 5 [60 < computer reading < 750]					

Operator:	Milota	Event (kiln charge): Columbia Vista - 1			
Time now:	9:43	· · · · · · · · · · · · · · · · · · ·	F	Run (sample):
AMBIENT D	emperature:	<u> </u>			
END TIME:	9:43				
CHECK DIL	JTION FLOW A	FTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer			Computer
Spa	an _{Diluted}	426	+58	4	56
Sample flow	rate (SFR) :	1,302	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution	n meter: <u>ີ </u>	scfh	L/min		[L/min = scfh*0.472]
Total flow rat	te (TFR): out with all four	2,60フ sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio		0.499	2		[SFR/TFR]
CHECK OF	ANALYZER CA	LIBRATION		[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	in range	Pot settings
span	98	917	875	to 935	282
mid	416	416	379	to 437	none
zero	0		-45	to +45	475
Dilution ratio	(DR _{Span}):	0499			[Span _{Diluted} / Span]
Dilution ratio	difference:	_0,1	% [10	0*(Abs(DR	Span - DR Flow))/DR Flow]
End time for	check:	9:47			
Comments:					
-				<u> </u>	

BACKGR	OUND INFORMA	TION		A CONTRACTOR OF THE CONTRACTOR	
Event (kiln charge): Columbia Vista - 1			Time now: 9:45		
Run (sam	ole):/6		Dry-bulb temperature:		
Operator: Moto			Wet-bulb tempe	erature: _ <i> 54</i>	
Date:	June 6 C	15		Ratio (TDR): <u>056</u>	
	0	and the second s	J		
AMBIENT DATA					
Laborator	y temperature:	<u>4</u> °c			
ANALYZE	R CALIBRATION			1, 2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	Pot settings	
zero	(0)	\mathcal{O}	does not appl	y 475	
span	905 (905)	906	does not appl	y 272	
mid	\$ 41) (412)	412	379 to 437	none	
SET DILU	TION FLOW BEF				
Total flow	rate (TFR):	2,607	_ L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	ition flow rate (TD	FR)	_ L/min	[TFR x (1 - DR)]	
sar	nple flow rate (TS	FR)	_ L/min	[TFR x DR]	
Set and re	ead dilution meter	2.7	_ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,357	_ L/min	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN	T	[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dil}	uted 469	0.518	0.521	0.5	
START TIME:					
ΔΝΔΙ ΥΖΕ	ER RANGE:		0.0 < 0.0	mputer reading < 750 1	

EIEI	D DATA SUEET	FOR TOTAL HVD		DON ANAI	VZED DOST	
	Molota		TOTAL HYDROCARBON ANALYZER - POST _			
AMBIENT			•)	
Laboratory	temperature:	<u>2_</u> ℃				
END TIME	7:33	_				
CHECK DI	LUTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent	
		Analyzer	yzer / /		Computer	
S	pan _{Diluted}	1 422		49		
Sample flow rate (SFR) :		_1,33>	⊇⊔min	[1= on	, 2, 3 = off, 4=meter	
Read dilution meter: 27		2 scfh	L/min [L/mir		[L/min = scfh*0.472]	
Total flow r (attach prir	rate (TFR): nt out with all fou		<u></u> L/min	[1	, 2, 3 = off; 4=meter]	
Dilution ratio (DR _{Flow}):		0.514			[SFR/TFR]	
CHECK O	F ANALYZER C	ALIBRATION		[1,	2=off; 3=on, 4=vent	
	Analyzer	Computer	Within range		Pot settings	
span	883	882	875 to 935		272	
mid	402	401	379 to 437		none	
zero	0	0	-45 to +45		475	
Dilution rat	tio (DR _{Span}):	0.512			[Span _{Diluted} / Span]	
Dilution ratio difference:		0.3	% [10	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]	
End time for check:		7:38				
Comments:						

BACKGR	OUND INFORMA	TION					
Event (kilr	n charge): <u>Colum</u> l	oia Vista - 1	Time now: 7:33				
Run (sam	ole):		Dry-bulb temperature:				
Operator:	ole): // Mlota June 7						
Date:	0.44 7	05	Wet-bulb temperature:				
Date.	you.		raiget bildion Italio (TbIt).				
AMDIENT	DATA						
AMBIENT		2					
Laboratory temperature: 22 °C							
ANALYZE	R CALIBRATION	L	[1, 2 = off; 3=on; 4=vent]				
	Analyzer, ppm	Computer	Within range	Pot settings			
zero	(0)	Ö	does not apply	474			
span	905 (905)	904	does not apply	788			
mid	41) (412)	411	379 to 437	none			
			-				
SET DILUTION FLOW BEFORE RUN							
Total flow rate (TFR): 2,599			_ L/min [1, 2, 3 = off; 4=meter]				
Target dilu	ıtion flow rate (TD	FR) 1.039	L/min	[TFR x (1 - DR)]			
sample flow rate (TSFR) 1, 5 59			L/min	[TFR x DR]			
Set and re	ead dilution meter	2,2	_scfh [scfh = L/min * 2.12]				
Sample flo	ow rate (SFR):	1,482	_ L/min [1 =	on; 2, 3 = off; 4=meter]			
CHECK DILUTION FLOW BEFORE RUN [1, 3=on; 2=off; 4=vent]							
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR Flow [SFR/TFR] 1	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}			
Span	uted 516	0.570	0,570	0,009			
START T	7:41	_ ['	1, 2, 5 = on; 3, 4	= off; tank valves off]			
ANAL V75	ER RANGE.	\supset	160 < 601	mouter reading < 750 1			

FIEL	D DATA SHEET	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST		
Operator: _	. 1 1		Event (kiln charge): Columbia Vista - 1				
Time now:	10:15		Run (sample):				
AMBIENT	DATA						
Laboratory	temperature:	<u>22</u> •c					
END TIME	2:15	_					
CHECK DI	LUTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent]		
		Analyzer			Computer		
Span _{Diluted}		530	53		1		
Sample flow rate (SFR):		1,509	_ L/min	[1= on	, 2, 3 = off, 4=meter]		
Read diluti	on meter: 🔀	scfh	_ L/min		[L/min = scfh*0.472]		
Total flow r (attach prir	rate (TFR): nt out with all fou	r sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]		
Dilution rat	io (DR _{Flow}):	0581	- 4		[SFR/TFR]		
CHECK OI	F ANALYZER C	ALIBRATION		ſ 1.	2=off; 3=on, 4=vent]		
Analyzer		Computer	Within range		Pot settings		
span	914	913	875 to 935		788		
mid	417	47	379 to 437		none		
zero		\sim	-45 to +45		474		
	io (DR _{Span}):	0,580			[Span _{Diluted} / Span]		
Dilution rat	io difference:	0.1	% [10	00*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]		
End time for	or check:	2:20					
Comments	:						

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - PRE

BACKGRO	OUND INFORMA	TION			
Event (kiln charge): Columbia Vista - 1			Time now: 215		
Run (sample):		Dry-bulb tempe	rature:		
Operator:	Milota		Wet-bulb tempe	erature: <i>150</i>	
Date:	June 71	<u>05</u>		Ratio (TDR):	
AMBIENT	DATA				
Laboratory	y temperature:	<u>2</u> •c	•		
ANALYZE	R CALIBRATION			1, 2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	7	
zero	(0)	0	does not app	ly 465	
span	905)	905	does not app	1y 280	
mid	411 (412)	411	379 to 437	none	
SET DILU	TION FLOW BE		3		
Total flow	rate (TFR):	2,609	≥ L/min	[1, 2, 3 = off; 4=meter]	
Target dilu	ition flow rate (TD	PFR)	L/min	[TFR x (1 - DR)]	
san	nple flow rate (TS	FR)	L/min	[TFR x DR]	
Set and re	ead dilution meter	: <u>2,25</u>	_ scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,518	_ L/min [1 =	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span	uted 530	0586	0,583	0.5	
START TIME: 14:23 [1, 2, 5 = on; 3, 4 = off; tank valves off]					
ΔΝΔΙ ΥΖΕ	R RANGE:)	0.0 < 0.0	omputer reading < 750 1	

FIEL		FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST
Operator: _	Milota	E	vent (kilı	n charge):	Columbia Vista - 1
Time now:	and	2		Run (sample	10
AMBIENT	DATA				
Laboratory	temperature:	<u>25</u> ℃			
END TIME:	9:44				
CHECK DI	LUTION FLOW	AFTER RUN	<u> </u>	[1,	3=on; 2=off; 4=vent
		Analyzer			Computer
S	pan _{Diluted}	539		5	38
Sample flo	w rate (SFR) :	1,560	_ L/min	[1= on	, 2, 3 = off, 4=meter
Read diluti	on meter: <u>2,25</u>	scfh	_ L/min		[L/min = scfh*0.472
Total flow r (attach prir	rate (TFR): nt out with all fou	r sets of data)	L/min	[1	, 2, 3 = off; 4=meter
Dilution rat		0.60			[SFR/TFR]
CHECK O	F ANALYZER C	ALIBRATION		<u> </u>	2=off: 3=on. 4=vent
	Analyzer	Computer	With	in range	Pot settings
span	909	908	875	to 935	280
mid	412	412	379	to 437	none
zero	0	٥		to +45	465
Dilution rat	io (DR _{Span}):	0,593	•		[Span _{Diluted} / Span
Dilution rat	io difference:	1,1	.% [10	00*(Abs(DR	Span - DR Flow))/DR Flow
End time for	or check:	Market 1, 100 Ma			
Comments	:				

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - PRE

BACKGR	OUND INFORMA	TION		
Run (sample): Operator:			-	erature:erature:
Date:	June 1		Target Dilution	Ratio (TDR): 016
AMBIENT Laborator	DATA y temperature: 2	<u>°5_</u> °c		
ANALYZE	R CALIBRATION	٧		1, 2 = off; 3=on; 4=vent]
	Analyzer, ppm	Computer	Within range	' ' I ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
zero	(0)	0	does not app	ly 465
span	905 (905)	904	does not app	ly 278
mid	H2 (412)	412	379 to 437	none
SET DILU	ITION FLOW BEI			
Total flow	rate (TFR):	2.610	_ L/min	[1, 2, 3 = off; 4=meter]
Target dilu	ution flow rate (TD	0FR)	_ L/min	[TFR x (1 - DR)]
sar	mple flow rate (TS	SFR)	_ L/min	[TFR x DR]
Set and re	ead dilution meter		_ scfh	[scfh = L/min * 2.12]
Sample flo	ow rate (SFR):	1,574	L/min	on; 2, 3 = off; 4=meter]
CHECK D	ILUTION FLOW	BEFORE RUN	I	[1, 3=on; 2=off; 4=vent]
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR/TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}
Span _{Dil}	uted 547	0,604	0,603	0,3
START TIME: 9.50ρ [1, 2, 5 = on; 3, 4 = off; tank valves off]				
ANALYZE	ER RANGE:	<u> </u>	[60 < cc	omputer reading < 750]

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - POST

Operator:Mlta_	E	vent (kilı	n charge):	Columbia Vista - 1
Time now:		F	Run (sample): <u>19</u>
AMBIENT DATA				
Laboratory temperature: 2	°C			
END TIME: 72				
CHECK DILUTION FLOW A	FTER RUN		<u>[1,</u>	3=on; 2=off; 4=vent]
	Analyzer			Computer
Span _{Diluted}	523			23
Sample flow rate (SFR) :	1.554	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read dilution meter: 25	scfh	_ L/min		[L/min = scfh*0.472]
Total flow rate (TFR): (attach print out with all four	acts of data))_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution ratio (DR _{Flow}):	0598			[SFR/TFR]
CHECK OF ANALYZER CAI	LIBRATION		[1,	2=off; 3=on, 4=vent]
Analyzer	Computer	With	n range	Pot settings
span 8/6	876	875	to 935	278
mid 399	398	379	to 437	none
zero ()	0	-45	to +45	465
Dilution ratio (DR _{Span}):	0.597	7		[Span _{Diluted} / Span]
Dilution ratio difference:	0.15	% [1C	0*(Abs(DR	_{Span} - DR _{Flow}))/DR _{Flow}]
End time for check:	7:26			
Comments:				
en e				

FIELD DATA SHEET FOR TOTAL HYDROCARBON ANALYZER - PRE

BACKGRO	OUND INFORMA	IION			
Event (kiln charge): Columbia Vista - 1			Time now:		
Run (samp	ole): <u>20</u>		Dry-bulb tempe	rature:	
Operator:	Milota		Wet-bulb temperature:		
Date:	Jine 8 0	5	Target Dilution	Ratio (TDR):	
	U				
AMBIENT	DATA				
Laborator	y temperature: <u>o</u>	<u>} </u>			
ANALYZE	R CALIBRATION			1, 2 = off; 3=on; 4=vent]	
	Analyzer, ppm	Computer	Within range	Pot settings	
zero	(0)	0	does not app	ly 465	
span	9 (5 (905)	904	does not app	ly 298	
mid	4)\ (412)	411	379 to 437	none	
SET DILU	ITION FLOW BEF	ORE RUN			
Total flow	rate (TFR):	2.594	_ L/min	[1, 2, 3 = off; 4=meter]	
Target dilution flow rate (TDFR) L/min [TFR x (1 - DI			[TFR x (1 - DR)]		
san	nple flow rate (TS	FR)	_ L/min	[TFR x DR]	
Set and re	ead dilution meter		_scfh	[scfh = L/min * 2.12]	
Sample flo	ow rate (SFR):	1,588	_ L/min	on; 2, 3 = off; 4=meter]	
CHECK D	ILUTION FLOW	BEFORE RUN		[1, 3=on; 2=off; 4=vent]	
	Analyzer	DR _{Span} [Span _{Diluted} /Span]	DR _{Flow} [SFR / TFR]	Difference, % 100*(DR _{Span} - DR _{Flow})/DR _{Flow}	
Span _{Dil}	uted 553	0,611	0.612	0.2	
START TIME: 778 [1, 2, 5 = on; 3, 4 = off; tank valves off]					
ANALYZE	ER RANGE:	5	[60 < co	omputer reading < 750]	

FIEL	D DATAISHEET	FOR TOTAL HYD	ROCAR	BON ANAL	YZER - POST
Operator: _					
Time now:	91.35		F	Run (sample): <u>20 </u>
AMBIENT	_	7			
Laboratory	temperature:	<u>√()</u> °C			
END TIME	<u> 9:36</u>	<u> </u>			
CHECK DI	LUTION FLOW	AFTER RUN		[1,	3=on; 2=off; 4=vent]
		Analyzer			Computer
S	pan _{Diluted}	547		5	+5
Sample flo	w rate (SFR) :	1,570	_ L/min	[1= on	, 2, 3 = off, 4=meter]
Read diluti	on meter: <u>_ ટ્ર</u> ાટે	scfh	_ L/min		[L/min = scfh*0.472]
Total flow r (attach prin	rate (TFR): nt out with all fou	2,585 r sets of data)	_ L/min	[1	, 2, 3 = off; 4=meter]
Dilution rat		0.607	-		[SFR/TFR]
CHECK O	ANALYZER CA	ALIBRATION		[1,	2=off; 3=on, 4=vent]
	Analyzer	Computer	With	in range	Pot settings
span	905	904	875	to 935	298
mid	412	4//	379	to 437	none
zero	\cup \cup	6'	-45	to +45	1465
Dilution rat	io (DR _{Span}):	0.60	L		[Span _{Diluted} / Span]
Dilution rat	io difference:	0,5	% [10	00*(Abs(DR	Span - DR Flow))/DR Flow]
End time fo	or check:	9:39			
Comments	End oh	nge			
	VAC C	Wesh 9:	tu-9.	50 1	8.1"-> 17.8"Ha

June 2, 05 Columbia Vista	GILIBRATOR 2 WET V4.4 DATE
1 .010	PUMP S/NID
(MV)	FLOW AVERAGE # SAMPLES
$\sqrt{17}$	2654 2654 01
	2659 2657 02 ()
	2650 2654 03
	2652 2654 04
GILIBRATOR 2 WET V4.4 DATE	GILIBRATOR 2 WET V4.4 DATE
PUMP S/NID	PUMP S/NID
FLOW AVERAGE # SAMPLES	FLOW AVERAGE # SAMPLES
I DOM HATHUR & DULLETTO	408.2 408.2 01
GILIBRATOR 2 WET V4.4 DATE	
PUMP S/NID	GILIBRATOR 2 WET V4.4 DATE
FLOW AVERAGE # SAMPLES	PUMP S/NID
378.8 378.8 01	FLOW AVERAGE # SAMPLES
-378.8 0.000 00	1539 1539 01
2626 2626 01	1534 1536 02
2629 2628 02 ()	1534 1536 03
2629 2628 03 \ \ \ /	1536 1536 04
2633 2629 04	1536 1536 05
GILIBRATOR 2 WET V4.4 DATE	GILIBRATOR 2 WET V4.4 DATE
PUMP S/NID	PUMP S/NID
FLOW AVERAGE # SAMPLES	FLOW AVERAGE # SAMPLES
	1588 1588 01
GILIBRATOR 2 WET V4.4 DATE	1585 1587 02
PUMP S/NID	1582 1585 03
FLOW AVERAGE # SAMPLES	1584 1585 04
426.2 426.2 01 11764 6095 02	1584 1585 05
11764 6095 02	GILIBRATOR 2 WET V4.4 DATE
GILIBRATOR 2 WET V4.4 DATE	PUMP S/NID
PUMP S/NID	FLOW AVERAGE # SAMPLES
FLOW AVERAGE # SAMPLES	2680 2680 01
1687 1687 01	2678 2679 02
1688 1687 02	2680 2680 03
1689 1688 03	2671 2677 04
1687 1688 04	2678 2678 05
1690 1688 05	
	GILIBRATOR 2 WET V4.4 DATE
GILIBRATOR 2 WET V4.4 DATE	PUMP S/NID
PUMP S/NID	FLOW AVERAGE # SAMPLES
FLOW AVERAGE # SAMPLES	2683 2683 01 /
405.6 405.6 01	2680 2682 02 (~))
-405.6 0.000 00	2683 2682 03 \ 7 /
1742 1742 01	2688 2683 04
1748 1745 02	2676 2682 05
1742 1744 03	
1739 1742 04	GILIBRATOR 2 WET V4.4 DATE
1750 1744 05	PUMP S/NID
	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	1284 1284 01
PUMP S/NID	1283 1283 02
FLOW AVERAGE # SAMPLES	1279 1282 03

TLOW AVERAGE # SHIPLES	408.2 408.2 01
GILIBRATOR 2 WET V4.4 DATE PUMP S/N FLOW AVERAGE # SAMPLES 378.8 378.8 01 -378.8 0.000 00 2626 2626 01 2629 2628 02 2629 2628 03 2633 2629 04	GILIBRATOR 2 WET V4.4 DATE
GILIBRATOR 2 WET V4.4 DATE. PUMP S/NID. FLOW AVERAGE # SAMPLES GILIBRATOR 2 WET V4.4 DATE. PUMP S/NID FLOW AVERAGE # SAMPLES 426.2 426.2 01 11764 6095 02	GILIBRATOR 2 WET V4.4 DATE
GILIBRATOR 2 WET V4.4 DATE PUMP S/NID FLOW AVERAGE # SAMPLES 1687 1687 01 1688 1687 02 1689 1688 03 1687 1688 04 1690 1688 05	GILIBRATOR 2 WET V4.4 DATE PUMP S/NID FLOW AVERAGE # SAMPLES 2680 2680 01 2678 2679 02 2680 2680 03 2671 2677 04 2678 2678 05
GILIBRATOR 2 WET V4.4 DATE PUMP S/NID FLOW AVERAGE	GILIBRATOR 2 WET V4.4 DATE PUMP S/N
GILIBRATOR 2 WET V4.4 DATE PUMP S/NID FLOW AVERAGE # SAMPLES 2664 2664 01 2661 2663 02 2661 2662 03 2661 2662 04 2659 2661 05 GILIBRATOR 2 WET V4.4 DATE	FLOW AVERAGE # SAMPLES 1284 1284 01 1283 1283 02 1279 1282 03 1276 1281 04 GILIBRATOR 2 WET V4.4 DATE PUMP S/NID FLOW AVERAGE # SAMPLES 1297 1297 01 1310 1303 02
PUMP S/NIDFLOW AVERAGE # SAMPLES 1780 1780 01	1310 1306 03 1308 1306 04 1300 05

	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	2657 2657 01
PUMP S/NID	2652 2654 02 (🛴)
FLOW AVERAGE # SAMPLES	2657 2655 03 \
2680 2680 01	2652 2654 04
2678 2679 02	
2683 2680 03	GILIBRATOR 2 WET V4.4 DATE
2676 2679 04	PUMP S/NID
2680 2680 05	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	1272 1272 01
PUMP S/NID	1269 1270 02
FLOW AVERAGE # SAMPLES	1271 1271 03
2506 2506 01	1264 1269 04
	GILIBRATOR 2 WET V4.4 DATE
GILIBRATOR 2 WET V4.4 DATE	PUMP S/NID
PUMP S/NID	FLOW AVERAGE # SAMPLES
FLOW AVERAGE # SAMPLES	1330 1330 01
2702 2702 01	1330 1330 02
2697 2700 O2 / \ \ \	1321 1327 03
2695 2698 03	1329 1328 04
2692 2697 04 / 🗸 /	1329 1328 05
2692 2696 05 (\ /	
OH IDDOTED O NET HA A DOTE	GILIBRATOR 2 WET V4.4 DATE
GILIBRATOR 2 WET V4.4 DATE	PUMP S/NID
FLOW AVERAGE # SAMPLES	FLOW AVERAGE # SAMPLES
1306 1306 # SHIPLES	2673 2673 01
1302 1304 02	2669 2671 02
1304 1304 03	2678 2673 03 2673 2673 04
312.0 1056 04	2673 2673 04 2673 2673 05
-312.0 1304 03	2010 2010 00
1303 1304 04	GILIBRATOR 2 WET V4.4 DATE
1298 1302 05	PUMP S/NID
	FLOW AVERAGE # SAMPLES _
GILIBRATOR 2 WET V4.4 DATE	2673 2673 01
PUMP S∕NID	2673 2673 02 / /
FLOW AVERAGE # SAMPLES	2683 2676 03 (/)
1312 1312 01	2683 2678 04 \ \ \ /
1314 1313 02	2676 2678 05
1312 1313 03 1322 1315 04	
1322 1315 04 1313 1315 05	GILIBRATOR 2 WET V4.4 DATE
1010 1010 00	PUMP S/NID
GILIBRATOR 2 WET V4.4 DATE	FLOW AVERAGE # SAMPLES
PUMP S/NID	1289 1289 01 1288 1288 02
FLOW AVERAGE # SAMPLES	1280 1286 03
2664 2664 01	1285 1286 04
2661 2663 02	1000 1200 04
2664 2663 03	GILIBRATOR 2 WET V4.4 DATE
2652 2660 04	PUMP S/NID
2659 2660 05	FLOW AVERAGE # SAMPLES
	1288 1288 01
GILIBRATOR 2 WET V4.4 DATE	
PUMP S/NID	1290 1290 03
FLOW AVERAGE # SAMPLES	1294 1291 04
222.2 222.2 01	
GILIBRATOR 2 WET V4.4 DATE	GILIBRATOR 2 WET V4.4 DATE
PUMP S/NID	
FLOW AVERAGE # SAMPLES	FLOW AVERAGE # SAMPLES
490.3 490.3 01	2678 2678 01 2688 2683 02
	2688 2684 03
GILIBRATOR 2 WET V4.4 DATE	2680 2683 04
PUMP S/NID	2678 2682 05

GILIBRATOR 2 WET V4.4 DATE	GILIBRATOR 2 WET V4.4 DATE
PUMP S/NID	
FLOW AVERAGE # SAMPLES 420.1 420.1 01	FLOW AVERAGE # SAMPLES
420.1 420.1 01	1187 1187 01
GILIBRATOR 2 WET V4.4 DATE	1184 1186 02 1183 1185 03
PUMP S/NID	1183 1185 03 1184 1185 04
FLOW AVERAGE # SAMPLES	.107 1103 04
2676 2676 01 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	GILIBRATOR 2 WET V4.4 DATE
2676 2676 02 (/) 2673 2675 03 (/)	PUMP S/NID
2671 2674 04	FLOW AVERAGE # SAMPLES
2671 2673 05	858.1 858.1 01 -858.1 0.000 00
	-858.1 0.000 00 2692 2692 01
GILIBRATOR 2 WET V4.4 DATE	2697 2695 02
PUMP S/NIDFLOW AVERAGE # SAMPLES	2688 2693 03
1182 1182 01	2700 2694 04
1182 1182 02	GILIBRATOR 2 WET V4.4 DATE
1182 1182 03	PUMP S/NID
1191 1184 04	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	654.1 654.1 01
PUMP S/NID	OIL INDOMOR A COMMISSION OF THE COMMISSION OF TH
FLOW AVERAGE # SAMPLES	GILIBRATOR 2 WET V4.4 DATE
1195 1195 01	PUMP S/NIDID
1189 1192 02	2692 2692 01
1186 1190 03 1195 1191 04	2700 2696 02 <i>(7</i>)
1190 1191 05	2690 2694 03
	2690 2693 04 /
GILIBRATOR 2 WET V4.4 DATE	GILIBRATOR 2 WET V4.4 DATE
PUMP S/NID	PUMP S/NID.
FLOW AVERAGE # SAMPLES 1691 1691 01	FLOW AVERAGE # SAMPLES
2673 2182 02	1151 1151 01 1151 1151 N2
	1151 1151 02 1146 1149 03
GILIBRATOR 2 WET V4.4 DATE	1148 1149 04
PUMP S/NID	
FLOW AVERAGE # SAMPLES 2669 2669 01	GILIBRATOR 2 WET V4.4 DATE
2669 2669 02	PUMP S/NID.
2671 2669 03	FLOW AVERAGE # SAMPLES 1163 1163 01
2673 2670 04	1163 1163 01 1157 1160 02
OULDDATED OUTTINA A DATE	1162 1161 03
GILIBRATOR 2 WET V4.4 DATEPUMP S/NID	1162 1161 04
FLOW AVERAGE # SAMPLES	OILIDDATOR O DER LA CRIST
362.7 362.7 01	GILIBRATOR 2 WET V4.4 DATE PUMP S/NID
	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	2688 2688 01
PUMP S/NIDFLOW AVERAGE # SAMPLES	2685 2686 02
2669 2669 01	2678 2684 03
2643 2656 02 (🗡)	2683 2683 04 2685 2684 05
2664 2658 03	2690 2685 06
2666 2660 04	
GILIBRATOR 2 WET V4.4 DATE	GILIBRATOR 2 WET V4.4 DATE
PUMP S/NID	PUMP S/NID
FLOW AVERAGE # SAMPLES	FLOW AVERAGE # SAMPLES 2683 2683 01
1164 1164 01	2690 2686 02
1165 1165 02 1162 1164 03	2705 2693 03 / 1
1162 1163 04	2688 2691 04
	2683 2690 05

Dillider County	2070 2073 00
PUMP S/NID FLOW AVERAGE # COMPLETE	2671 2674 04
1104 SHIPLES	2676 2674 05
1107	OH IDDAMOR O LINE III I BANK
1104	GILIBRATOR 2 WET V4.4 DATE
1105	PUMP S/NID
1185 04 1187 1185 05	FLOW AVERAGE # SAMPLES 1162 1162 01
1103 05	1160 1161 02
GILIBRATOR 2 WET V4.4 DATE	1156 1160 03
PUMP S/NID	1163 1160 04
FLOW AVERAGE # SAMPLES	1162 1161 05
1132 1132 01	1102 1101
1132 1132 02	GILIBRATOR 2 WET V4.4 DATE
1132 1132 n3	PUMP S/NID
1130 1131 04	FLOW AVERAGE # SAMPLES
077.77	1153 1153 01
GILIBRATOR 2 WET V4.4 DATE	1151 1152 02
rome by MID.	1153 1152 03
OCT HVERAGE # SAMPLES	1148 1151 04
2671 007	
200	GILIBRATOR 2 WET V4.4 DATE
200	PUMP S/NID
2670	FLOW AVERAGE # SAMPLES
2673 2674 05	2683 2683 01 2676 2679 02
GILIBRATOR 2 WET V4.4 DATE	2678 2679 02 2678 2679 03
PUMP S/NID	2680 2679 04
FLOW AVERAGE # SAMPLES	2000 2017 04
2685 2685 01	GILIBRATOR 2 WET V4.4 DATE
2676 2680 no / / \	PUMP S/NID
2678 2680 na (\ \	FLOW AVERAGE # SAMPLES 🤝
2683 2680 04	2683 2683 01
OH IPPOP	2690 2686 02 () \
GILIBRATOR 2 WET V4.4 DATE	2685 2686 03 \ (`\)
PUMP B/NID.	2683 2685 04 \ \ \ / \ /
1170 AVERAGE # SAMPLES	
1171	GILIBRATOR 2 WET V4.4 DATE
1175	PUMP S/NID
1171	FLOW AVERAGE # SAMPLES 1294 1294 01
1171 1172 04	1294 1294 01
GILIBRATOR 2 WET V4.4 DATE	1293 1293 03
PUMP S/NID	1294 1293 04
1 DVW HVERAGE # SAMDIFS	1293 1293 05
1161 1161 _{D1}	
1165 1163 no	GILIBRATOR 2 WET V4.4 DATE
1159 1162 03	PUMP S/NID
1164 1162 04	FLOW AVERAGE # SAMPLES
CH IDDATAD A UDD	1300 1300 01
GILIBRATOR 2 WET V4.4 DATE	1304 1302 02
PUMP S/NID FLOW AVERAGE # SAMPIFS	1298 1301 03
OCCO # DHUKLES	1299 1300 04
2000	1296 1299 05
2680 2679 02 2671 2676 03	GILIBRATOR 2 WET V4.4 DATE
2680 2677 04	PUMP S/NID
2680 2678 05	FLOW AVERAGE # SAMPLES
	2669 2669 01
GILIBRATOR 2 WET V4.4 DATE	2661 2665 02
PUP D/NID.	2661 2664 03
OLO 1 SAMPLES	2688 2670 04
818.1 01	
2670	GILIBRATOR 2 WET V4.4 DATE
2072	PUMP S/NID
2010 /h/h nn / \ \	FIALL AMPROE / + CAMPIEC
2673 2676 02 ())	FLOW AVERAGE # SAMPLES

2647 2 642 03 - 2638 2641 04	FLOW AVERAGE # SAMPLES 2606 2606 01
GILIBRATOR 2 WET V4.4 DATE	2597 2601 02 27
PUMP S/NID	2622 2608 03 2601 2607 04
FLOW AVERAGE # SAMPLES 2643 2643 01	2606 2606 05
2633 2638 02 (1/2)	GILIBRATOR 2 WET V4.4 DATE
2661 2646 03 () ()	DUMP SAN ID.
2636 2643 04	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	2601 2601 01 2610 2606 02
PUMP S/NIDFLOW AVERAGE # SAMPLES	2601 2604 03 (\
1283 1283 01	2606 2605 04 V 2617 2607 05
1289 1286 02 1292 1288 03	
1290 1289 04	GILIBRATOR 2 WET V4.4 DATE
1293 1289 05	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	1358 1358 01
PUMP S/NID	1358 1358 02 1358 1358 03
FLOW AVERAGE # SAMPLES 1255 1255 01	1355 1357 04
1255 1255 02	GILIBRATOR 2 WET V4.4 DATE
1256 1255 03	DUMP S/NIDID
1253 1255 04 1254 1255 05	FLOW AVERAGE # SAMPLES
1274 1258 06	1338 1338 01 1337 1337 02
GILIBRATOR 2 WET V4.4 DATE	1338 1337 03
PUMP S/NID	1337 1001
FLOW AVERAGE # SAMPLES 2604 2604 01	GILIBRATOR 2 WET V4.4 DATE
2606 2605 02	PUMP S/N
2608 2606 03 2606 2606 04	2597 2597 01
2606 2606 04 2606 2606 05	2592 2595 02 2615 2601 03
OILIDDATION O LIET III A DATE	2615 2601 03 2606 2603 04
GILIBRATOR 2 WET V4.4 DATE	GILIBRATOR 2 WET V4.4 DATE
FLOW AVERAGE # SAMPLES	DIMP SZN
2613 2613 01 (C) 2624 2618 02 (C)	FLOW AVERAGE # SAMPLES
2610 2616 03 ()	581.1 581.1 01 -581.1 0.000 00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2610 2614 04	2597 2597 01 \
GILIBRATOR 2 WET V4.4 DATE	2599 2598 02 \
PUMP S/NIDFLOW AVERAGE # SAMPLES	2597 2599 04
1327 1327 01	GILIBRATOR 2 WET V4.4 DATE
1332 1330 02 1334 1331 03	PUMP S/N
1334 1331 03 1335 1332 04	FLOW AVERAGE # SAMPLES
OLI IDDATED O LICTURA A DATE	1482 1482 02
GILIBRATOR 2 WET V4.4 DATEPUMP S/NIDID	1482 1482 03
FLOW AVERAGE # SAMPLES	1481 1482 04 1482 1482 05
1301 1301 01 1303 1302 02	1402
1300 1301 03	GILIBRATOR 2 WET V4.4 DATE
1303 1302 04	FLOW AVERAGE # SAMPLES
GILIBRATOR 2 WET V4.4 DATE	1508 1508 01 1510 1509 02
DIMD S/NID	1514 1511 03
	04

in a direction	1507	1509	05					
	GILIBRAT	FOR 2 WET	V4.4 DATE		PUMP S/I FLOW	NAVERAGE	# SAMPLES	
	PUMP S/	V	ID		1556	1556	01	
	FLOW	AVERAGE	# SAMPLES		1555	1556	02	
	2597	2597	01		1554	1555	03	
	2601	2599	02		1551	1554	04	
	2599	2599	03					
	2599	2599	04		GILIBRAT	TOR 2 WET V	4.4 DATE	
	2597	2599	05		PUMP S/I	N	ID	
	077.75546				FLOW	AVERAGE	# SAMPLES	
			V4.4 DATE		2595	2595	01	
			ID		2604		02	
	FL0W 2595	AVERAGE 2595	# SAMPLES	_	2606		03	
	20 5 0 2617	2090 2606	01 02		2592	2599	04	
	2610	2607	03 / 1		011 1004	TOD 0 1200 11		
	2604	2607	04 / 1 9				4.4 DATE	
	2597	2605	05 / 1				ID	
	203.				FLOW	AVERAGE 582.9	# SAMPLES	
	GILIBRAT	TOR 2 WET	V4.4 DATE			0.000	01 00	
			ID		2595		00 01	1
	FLOW	AVERAGE	# SAMPLES		2592		02 <i>l</i>	//>
	1521	1521	01			2594	03	
	1520	1520	02		2595		04 (
	1516	1519	03		2592	2594	05 \	0
	1518	1519	04					
	1515	1518	05		GILIBRA'	TOR 2 WET V	4.4 DATE	
					PUMP S/	N	ID	
			V4.4 DATE		FLOW	AVERAGE	# SAMPLES	
			ID		1590	1590	01	
		AVERAGE	# SAMPLES		1590	1590	02	
		1559	01 02		1584	1588	03	
		1560 1561	02 03		1589	1588	04	
		1560	03		-1589	1588	03	
	1000	1500	04		OII IDDA'	ron o uem u	4 4 DATE	
	GILIBRAT	TOR 2 WET	V4.4 DATE				4.4 DATE	
			ID		FLOW	AVERAGE		
	FLOW	AVERAGE	# SAMPLES		1 7.00	LIVENHGE	* *************************************	
	2608	2608	01		GILIBRA	TOR 2 WET V	4.4 DATE	
	2610	2609	02	•			ID	
	2606	2608	03		FLOW	AVERAGE	# SAMPLES	
	2608	2608	04		1568	1568	01	
	2610	2609	05		1570		02	
	OIL IDDA'	ran a urt	V4.4 DATE		1575		03	
			ID		1569	1570	. 04	
	FLOW	AVERAGE	# SAMPLES		077 7004	rop o : mm u	4 4 5 4 5 4 5 5	
	601.8	601.8	01				4.4 DATE	
	-601.8	0.000	00 ~				ID	
	2608	2608	01 (10)		FLOW	AVERAGE 2583	# SAMPLES 01	
	2610	2609	02 ([9])			2576	02	
	2617	2612	03 ()			2576 2581	03	
	2606	2610	04		2597			
					,			
			V4.4 DATE					
			ID					
		AVERAGE						
	1574	1574	01					
		1576	02					
		1575	03					
	1573 1576	1574 1574	04 05					
	1070	1074	00					

GILIBRATOR 2 WET V4.4 DATE.....